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Abstract

Pituitary adenylate cyclase activating polypeptide-38 (PACAP38) is a widely distributed neuropeptide involved in
neuroprotection, neurodevelopment, nociception and inflammation. Moreover, PACAP38 is a potent inducer of
migraine-like attacks, but the mechanism behind this has not been fully elucidated.
Migraine is a neurovascular disorder, recognized as the second most disabling disease. Nevertheless, the antibodies
targeting calcitonin gene-related peptide (CGRP) or its receptor are the only prophylactic treatment developed
specifically for migraine. These antibodies have displayed positive results in clinical trials, but are not effective for all
patients; therefore, new pharmacological targets need to be identified.
Due to the ability of PACAP38 to induce migraine-like attacks, its location in structures previously associated with
migraine pathophysiology and the 100-fold selectivity for the PAC1 receptor when compared to VIP, new attention has
been drawn to this pathway and its potential role as a novel target for migraine treatment. In accordance with this,
antibodies against PACAP38 (ALD 1910) and PAC1 receptor (AMG 301) are being developed, with AMG 301 already in
Phase II clinical trials. No results have been published so far, but in preclinical studies, AMG 301 has shown responses
comparable to those observed with triptans. If these antibodies prove to be effective for the treatment of migraine,
several considerations should be addressed, for instance, the potential side effects of long-term blockade of the PACAP
(receptor) pathway. Moreover, it is important to investigate whether these antibodies will indeed represent a therapeutic
advantage for the patients that do not respond the CGRP (receptor)-antibodies.
In conclusion, the data presented in this review indicate that PACAP38 and PAC1 receptor blockade are promising
antimigraine therapies, but results from clinical trials are needed in order to confirm their efficacy and side effect profile.
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Review
Discovery of PACAP
The description of the pituitary adenylate cyclase activat-
ing polypeptide-38 (PACAP38) was made by Arimura
and his team in 1989, following the extraction of the
peptide from more than 4000 samples of ovine hypothal-
amus. After the isolation, its characterization showed
that it was formed by 38 amino acids, with a 68% hom-
ology with vasoactive intestinal peptide (VIP), described
almost twenty years earlier [1]. Subsequently, the peptide
was synthesized and shown to activate adenylyl cyclase

(AC) in cultures of rat pituitary cells, thereby obtaining
its name as pituitary adenylate cyclase activating poly-
peptide. A year later, a fragment of PACAP38 with simi-
lar AC activation profile was isolated. This was formed
by 27 amino acids and thus named PACAP27 [2]. That
same year, cloning of cDNA from ovine PACAP38
revealed that the amino acid sequence of the mature
human PACAP38 was identical to that of the ovine. In
addition, later studies showed that it was identical in all
mammals [3], suggesting that it has been conserved
during evolution.
This review will give an overview of PACAP, its

complex signaling pathway, the role PACAP and its
receptors have in physiological conditions and their
involvement in some disorders, with special focus on
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migraine. Moreover, the preclinical results of PACAP
(receptor) blockade in migraine models, the side effects
that could be expected in clinical trials, and the con-
siderations that must be taken if PACAP (receptor)-
antibodies are effective for migraine treatment will be
discussed.

Pharmacology
PACAP belongs to a wider group of peptides called the
VIP/glucagon/growth hormone releasing factor/secretin
superfamily. The ADCYAP1gene, located on chromosome
18, encodes PACAP; initially, a proprotein is expressed,
and later processed to form a 38 amino acid peptide
(PACAP38) with a cleavage-amidation site that can gener-
ate a 27-residue-amidated fragment (PACAP27). In mam-
mals, the most prevalent form is PACAP38 [4], therefore,
in this review PACAP38 will be referred as PACAP unless
stated otherwise.
Three PACAP receptors have been described: VPAC1,

VPAC2 and PAC1, all coupled to G-proteins (Fig. 1).
VPAC1 and VPAC2 receptors present equal affinity for
PACAP and VIP and their activation stimulates AC. On
the other hand, PAC1 receptor is 100 times more selective
for PACAP and presents a complex signaling pathway [4].
Alternative splicing of the PAC1 receptor gene results

in several isoforms. These receptor variants are charac-
terized by shorter extracellular domains (PAC1short,
PAC1veryshort), different inserts in an intracellular loop
important for G-protein interaction (PAC1null, PAC1hip,
PAC1hop1, PAC1hop2, PAC1hiphop1, PAC1hiphop2)

and/or discrete sequences located in transmembrane do-
mains II and IV (PAC1TM4) [5–8]. Of relevance, in
humans, twelve homologues have been reported [7, 9–
11], which have been reviewed elsewhere [12, 13]. For
each splice variant, PACAP38 and PACAP27 present
similar affinity and potency for AC and phospholipase C
(PLC) stimulation, but different efficacy (i.e. maximal effect)
of PLC responses [14, 15]. Although in several processes
the activation of AC or PLC can result in similar “stimula-
tory” responses, in smooth muscle cells (e.g. blood vessels),
activation of AC leads to vasodilation, whereas PLC activa-
tion results in vasoconstriction. This plays an important
role in disorders such as migraine, where expression of a
PAC1 receptor isoform with a lower PLC efficacy could
favor AC stimulation, thus facilitating vasodilatory re-
sponses in cranial blood vessels [16, 17].
To study PAC1 receptor-mediated responses, selective

agonists and antagonists are used. Currently, one select-
ive agonist has been described, maxadilan [18, 19] and
three antagonists M65, Max.d.4 and PACAP6–38 [20].
However, no study has investigated whether such com-
pounds are selective for one PAC1 receptor variant, or
whether they bind to all isoforms. Moreover, PACAP6–
38 also binds to the VPAC2 receptor, and, together with
M65, has been shown to behave as agonist of the PAC1

receptor in certain tissues [21, 22]. Hence, novel select-
ive pharmacological tools are needed to characterize
PAC1 receptor-mediated responses. Indeed, an antibody
against the PAC1 receptor, such as AMG 301, could be
useful for characterization; however, it is yet not clear

Fig. 1 PACAP receptors. Three receptors to PACAP have been described: VPAC1, VPAC2 and PAC1. VIP and PACAP show similar affinity for VPAC1
and VPAC2, whereas PACAP is 100-fold more selective for PAC1 receptor. The antibodies developed for prophylactic antimigraine treatment bind
either to PACAP (PACAP38, ALD1910) or to the PAC1 receptor (AMG 301)
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wheter this antibody is selective for one specific variant.
If the antibody would be selective for one of the splice
variants, this may affect its therapeutic potential, in par-
ticular if there are different splice variants expressed in
different human populations. On the other hand, differ-
ent splice variants might hypothetically offer the possi-
bility of designing a drug that would selectively affect
the PAC1 receptor in the trigeminovascular system,
while not affecting PAC1 receptors at other sites in the
body, thus reducing its potential side effects.

Physiological roles of PACAP and the PAC1 receptor
Preclinical studies have shown that PACAP and PAC1

receptors are widely distributed, both centrally and per-
ipherally. It is therefore not surprising that PACAP is
described as a (neuro)hormone, neurotransmitter, neuro-
modulator, neurotrophic factor and immunomodulator
[13]. As the PAC1 receptor is currently under investiga-
tion for migraine treatment, only the distribution of this
receptor will be reviewed, while the distribution of
VPAC1/2 receptors has been reviewed extensively else-
where [13, 23, 24].

PACAP/PAC1 receptor in the central nervous system
PACAP fibers and PAC1 receptors are widely expressed
throughout the central nervous system (CNS) with the
highest density of both in the hypothalamus and supra-
optic nucleus [25–31]. In accordance with this, PAC1

receptor activation has been associated with release of
vasopressin and regulation of drinking behavior [32, 33],
decrease of food intake [34–36], modulation of the
sleep/wake cycle [37, 38], clock gene expression [38],
melatonin synthesis stimulation [39], sexual maturation
[40, 41], stress and sexual behavior [41, 42], learning
[43], pain processing [44] and psychomotor responsive-
ness [45] .
Of special interest for migraine, both PACAP fibers and

the PAC1 receptor are present in the paraventricular
nucleus of the hypothalamus, the ventrolateral periaque-
ductal gray, the locus coeruleus, the solitary nucleus, the
trigeminal nucleus caudalis (TNC) and the trigeminal gan-
glion (TG). These structures have all been associated with
nociception and/or migraine pathophysiology [23, 46–49].

PACAP/PAC1 receptor in the periphery
Peripherally, PACAP fibers and/or cell bodies have been
described in acrosome caps of primary spermatocytes,
mature spermatids, in the testis, epithelial cells from
epididymal tubules, the ovaries, mammary glands, in
stromal stem cells and terminal placental villi, where the
amount of PACAP mRNA increases with the progres-
sion of pregnancy [50–52]. Similarly, PAC1 receptors
have been described in spermatids, the penile corpus
cavernosum, the ovaries, the chorionic vessels and in

stromal and decidual cells of the placenta [51, 53–55]. Con-
sidering the presence of PACAP and PAC1 receptors also in
hypothalamus and pituitary, an important role in modula-
tion of the hypothalamo-pituitary-gonadal axis is suggested.
PACAP fibers and cell bodies are also found in the ad-

renal gland, pancreas, epithelium and smooth muscle
cells of the urinary tract, the bladder, urethra, larynx,
lungs, gastrointestinal smooth muscle cells, duodenal
mucosa, thymus, spleen and innervating vascular
smooth muscle cells [23, 26, 56–67]. PAC1 receptors
have been described in the adrenal medulla, pancreas,
liver, lungs, enterochromaffin-like cells, thymus and vas-
cular smooth muscle cells [47, 56, 62, 67–70].
Due to their vast distribution peripherally, PACAP and

the PAC1 receptor are involved in a variety of physio-
logical processes, such as regulation of adrenaline release
[71], stimulation of adipocyte thermogenesis [72], lipid
metabolism [73], metabolic stress adaptation [74],
glucose and energy homeostasis [75], renin production
[76, 77] and inflammatory responses [78]. Furthermore,
PACAP and the PAC1 receptor have a crucial role in the
long-term maintenance of neurogenic vasodilation in
the periphery and in the homeostatic responses to
cerebral, retinal, cardiac, hepatic, intestinal and renal
ischemic events [79–88]. This topic has been extensively
reviewed elsewhere [89].

PACAP and PAC1 receptor in pathophysiological
conditions
Besides being involved in several physiological processes,
PACAP is thought to contribute to the pathophysiology
of several conditions.
PACAP has been associated with regulation of inflam-

matory processes. In an arthritis model, PACAP−/− mice
showed absence of arthritic hyperalgesia and reduction
of joint swelling, vascular leakage and inflammatory cell
accumulation. In the late phase of the disease, immune
cell function and bone neoformation were increased
[90]. In rheumatoid arthritis, the vasodilatory effects of
PACAP through activation of the PAC1 receptor facili-
tated plasma leakage, edema formation, and leukocyte
migration [91, 92]. Furthermore, PACAP−/− mice devel-
oped more severe inflammation and tumors in a model
of colitis [78]. In preclinical models, upregulation of
PACAP and its receptors in micturition pathways con-
tributed to the development of urinary bladder dysfunc-
tion, including symptoms of increased voiding frequency
and pelvic pain [58], suggesting a role in low urinary
tract dysfunction. In the nervous system, studies demon-
strated anxiogenic actions of PACAP and the possibility
of blocking anxiety-related behaviors with PAC1 receptor
antagonists [93–95]. In patients with post-traumatic
stress disorder (PTSD), blood levels of PACAP corre-
lated with severity of stress-related symptoms [96], and
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in females, a single nucleotide polymorphism in the
estrogen response element of the PAC1 receptor gene is
predictive of PTSD diagnosis [97].
Furthermore, PACAP plays a complex role in pain

transmission. At the peripheral sensory nerve terminals,
pro- and anti-nociceptive effects are observed; while in
CNS, central sensitization, increase of neuronal excita-
tion and induction of chronic pain have been described
[98]. In an acute somatic and visceral inflammatory
model, PACAP decreased pain transmission; however,
after application in the spinal cord, a transient induction
of analgesia was followed by long-lasting algesia [99].
Moreover, injection of PACAP into the paraventricular
nucleus of hypothalamus increased the activity of the
TNC, an effect which was inhibited by the PAC1 recep-
tor antagonist [48]. Although it has been shown that
PACAP is actively transported through the blood-brain
barrier (BBB), it is rapidly degraded or returned by efflux
pumps [100]. Thus, a direct central action of peripheral
PACAP is unlikely.
Although the role of PACAP in pain processing re-

mains elusive, clinical data strongly suggest the involve-
ment of PACAP in the pathophysiology of migraine and
cluster headache (CH) (see also [101, 102]). Recent evi-
dence of a correlation between a genetic variant of the
PAC1 receptor gene (ADCYAP1R1) and susceptibility to
CH was demonstrated [103]. Another study identified a
relationship between altered PACAP levels in peripheral
blood and different types of headache [104]. Further, two
studies reported low interictal plasma levels of PACAP
in migraine and CH when compared to controls [105,
106]. Particularly, a detailed analysis of PACAP mRNA
expression in peripheral blood mononuclear cells de-
tected a significantly lower level of PACAP in migraine
patients compared to healthy controls, with no signifi-
cant differences revealed between the control group and
tension-type headache, CH or medication overuse head-
ache groups. Interestingly, PACAP increased ictally in
jugular or cubital blood of migraine [105, 107, 108] and
CH patients [93, 106], and levels decreased as headache
ameliorated after sumatriptan administration [108].
Finally, when administered to migraine patients, PACAP
induced an instant headache in 90% of patients, which
was later followed by a delayed headache similar to a
migraine-like attack in two thirds of the subjects [109].
This has led to study the role of PACAP in migraine
pathophysiology as will be discussed in the next section.

PACAP in migraine pathophysiology
The use and development of experimental animal and
human models of headache, migraine in particular, have
provided invaluable insight into the pathophysiological
mechanisms underlying headache disorders [110, 111].
To investigate the molecular mechanisms behind the

headache-inducing effects of PACAP, a number of ani-
mal studies have been conducted. Additionally, several
human studies have been performed, some of these in
combination with imaging techniques. In the following
sections, both human and animal studies investigating
the headache-related effects of PACAP will be reviewed.

Human studies
The headache-inducing effect of PACAP was first re-
ported in a study on cerebral blood flow in healthy volun-
teers, where 10 out of 12 participants reported mild to
moderate headache after PACAP infusion [112]. A
double-blind, randomized, placebo-controlled, crossover
study later showed that 12 out of 12 healthy subjects and
11 out of 12 migraine patients reported headache after
intravenous infusion of PACAP, compared to two and
three, respectively, after placebo [109]. Further, two
healthy subjects and one migraine patient reported a
migraine-like attack within 1 h after infusion, whereas six
migraine patients reported a migraine-like attack after a
mean of 6 h (range 2–11 h) after infusion. This study also
found dilation of middle cerebral artery (MCA) and the
superficial temporal artery after PACAP infusion.
The role of vasodilation in PACAP-induced headache

was further explored in a magnetic resonance angiography
(MRA) study in healthy volunteers [113]. Eight out of nine
participants reported an immediate headache and 100%
reported a delayed headache after PACAP infusion. Fur-
ther, over a 5 h period PACAP induced a sustained dila-
tion of the extracranial middle meningeal artery (MMA)
but no change in intracerebral MCA. Collectively, these
studies support the notion that PACAP induces headache
via sustained vasodilation. In another MRA study, PACAP
infusion induced headache in 91% of included migraine
patients, and 73% reported migraine-like attacks com-
pared to 82% and 18%, respectively, after VIP administra-
tion. Further, PACAP induced a long-lasting (> 2 h)
dilation of extracranial arteries, whereas the dilation
caused by VIP normalized after 2 h. In both cases, dilation
of intracranial arteries was not observed. This further
underlines prolonged extracranial vasodilation as the mi-
graine inducing mechanism of PACAP [114]. Interestingly,
in an in vitro study neither PACAP nor VIP were potent
in inducing vasodilation of the intracranial portion of the
human MMA [115].
In a resting-state magnetic resonance study, infusion

of PACAP affected connectivity in the salience, the
default mode and the sensorimotor network during
migraine attacks. VIP had no effect on these networks
[116]. Another study in migraine patients reproduced
the induction of migraine-like attacks in 72% of patients
and showed that PACAP induced premonitory symp-
toms in 48% of patients compared to 9% after CGRP
[117], suggesting an effect on central PAC1 receptors.
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However, as described above, PACAP is rapidly degraded
or transported back after actively crossing the BBB
[100]; therefore, the premonitory symptoms could be
mediated via activation of a central structure that is not
protected by the BBB.
Two studies in migraine patients have further analysed

plasma levels of markers of peptide release from para-
sympathetic (VIP) and sensory (CGRP) perivascular
nerve fibres; mast cell degranulation (tumour necrosis
factor alpha and tryptase); neuronal damage, glial cell
activation or leakage of the BBB (S100 calcium binding
protein B and neuron-specific enolase); and hypothal-
amic activation (prolactin, thyroid-stimulating hormone,
follicle-stimulating hormone, luteinizing hormone and
adrenocorticotropic hormone) after PACAP infusion
[114, 118]. Only levels of VIP, S100 calcium binding pro-
tein B, prolactin and the thyroid-stimulating hormone
were modified and did not differ between patients who
developed migraine-like attacks and those who did not.
However, it is important to consider that samples were
obtained from the antecubital vein and it is not known
yet if peripheral plasma changes reliably reflect cranial
release of mediators.
The human studies point out PACAP as a key player

in migraine pathophysiology [102]. As VIP does not
induce migraine-like attacks, it is assumed that PACAP’s
actions are mediated by PAC1 receptor activation.
Nevertheless, it is still too early to rule out VPAC1/2 re-
ceptors as additional potential antimigraine targets, since
no studies in humans have been performed with antago-
nists. Further, the short plasma half-life of VIP, two mi-
nutes (as compared to 6–10 min of PACAP [119]), could
be the cause of its lack of migraine-inducing effects.

Animal studies
To characterize the exact receptor involved in
PACAP-mediated actions, the vasodilatory effect of
PACAP was elucidated in animal studies, showing that
VIP, PACAP38 and PACAP27 induce vasodilation of the
rat MMA in vivo [120, 121]. Interestingly, this effect was
blocked by VPAC1 antagonists in the former [120] and
VPAC2 antagonists in the latter [121]. Both studies
found no effect of PAC1 antagonists on vasodilation.
Similarly, in an in vitro study, PACAP induced vasodila-
tion of the human middle meningeal and distal coronary
arteries, and this effect was not modified by PACAP6–
38 [115]. In contrast, an ex vivo study found that PAC1

antagonists reversed the PACAP-induced vasodilation in
the rat MMA [17]. As mentioned previously, PAC1 recep-
tor antagonists have shown agonistic behavior and affinity
for VPAC2 receptors. This could explain the contradictory
results observed in the MMA vasodilation studies. There-
fore, different methods must be used to elucidate the
receptors involved in migraine pathophysiology. For

example, in a in vivo model of chronic migraine, induced
by recurrent chemical dural stimulation, PAC1 receptor
mRNA was shown to be increased in the TG, but not in
the TNC, and no significant differences were found in the
expression of the VPAC1 and VPAC2 receptors [122].
Moreover, in an in vivo rat model, intravenous administra-
tion of AMG 301, the PAC1 receptor antibody, inhibited
evoked nociceptive activity in the trigemino-cervical com-
plex, and the results were comparable to the inhibition
observed with sumatriptan [123].
In addition to sustained vasodilation, mast cell de-

granulation has also been suggested as one of the
headache-inducing mechanisms of PACAP. This hypoth-
esis is based on findings from animal studies showing
that PACAP degranulates mast cells from the rat dura
mater [124]. Further, PACAP-induced delayed vasodila-
tion of the rat MMA is attenuated in mast cell depleted
rats [125]. Interestingly administration of VIP did not
result in mast cell release of histamine from the dura
[126]. However, as mentioned previously, no changes in
peripheral blood markers of mast cell degranulation have
been observed in migraine patients [114, 118].
Collectively, the animal studies confirm that PACAP

induces vasodilation and suggest that this effect might
be mediated through degranulation of mast cells. Also,
recent results show that these effects are most likely
exerted through activation of the PAC1 receptor. Due to
the contradictory results, further studies are warranted
to confirm this.

PACAP (receptor) blockade as a therapeutic target
As shown above, PACAP seems to play an important
role in migraine pathophysiology. Although the exact
receptor involved has not yet been elucidated, some
studies indicate that the PAC1 receptor is the most
important [17, 48, 113, 117, 122, 123]. Therefore, both
PACAP and PAC1 receptor have been suggested as novel
targets for migraine treatment and possibly a new thera-
peutic option for patients who do not respond to CGRP
(receptor) blocking drugs. Although both neuropeptides
co-localize in the trigeminal ganglion [49], and could
share some biological cascades, the PACAP-induced
migraine attacks indicate an independent role of PACAP
in the genesis of migraine.
In this light, the interest from pharmaceutical com-

panies for blocking the PACAP/PAC1 receptor pathway
has increased. There are two therapeutic approaches
to inhibit PACAP: (i) PAC1 receptor antagonists or
antibodies directed against this receptor; or (ii) anti-
bodies directed against the peptide PACAP [102].
Since PAC1 receptor antagonists have been reported
to act as agonists depending on the tissue (see
Pharmacology), the antibodies seem a better option
for blocking this receptor.
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Currently, a phase 2a, randomized, double blind,
placebo-controlled study is underway to evaluate the
efficacy and safety of a PAC1 receptor antibody (AMG
301) in subjects with chronic or episodic migraine
(Clinical trials identifier: NCT03238781, [127]). Unfortu-
nately, no preliminary results have been published so far.
Preclinical studies are also evaluating a monoclonal anti-
body (ALD1910) targeting PACAP38 for its potential in
the treatment of migraine patients who have an inad-
equate response to therapeutics directed at CGRP or its
receptor [128].

Potential side effects of PACAP/PAC1 receptor blockade
Indeed, the possibility of a new therapeutic target for
prophylactic migraine treatment is exciting; however, it
is important to consider that PACAP and PAC1 receptor
participate in numerous physiological processes (see
Fig. 2). As antibodies are not likely to cross the BBB,
only the possible side effects regarding peripheral block-
ade of PACAP and PAC1 receptor will be discussed.
As PACAP and PAC1 receptor are expressed throughout

the components of the hypothalamo-pituitary-gonadal
axis [50–52], and the pituitary gland is not protected by
the BBB, a dysregulation of the functions of this axis could
be a concern. Also, the immune system has been de-
scribed to be regulated by activation of PAC1 receptor
[61]. This, together with its participation in the modula-
tion of inflammatory processes, could result in alterations
in the immune response and increased production of
pro-inflammatory cytokines [78, 129]. In accordance with

this, in a mouse model of colitis, PACAP-deficient mice
developed a more severe disease [78].
Blocking PACAP might also alter the response to meta-

bolic stress. Studies with PACAP-deficient mice have
shown a more profound and longer lasting insulin-induced
hypoglycemia and a reduction in glucose-stimulated insulin
secretion [74, 75]. Moreover, PACAP-deficient mice had
hepatic microvesicular steatosis, intracellular fat accumula-
tion in muscle and skeletal muscle and depletion of sub-
cutaneous white fat [73].
Furthermore, PACAP and the PAC1 receptor partici-

pate in vasodilatory responses, renin release and regula-
tion of cardiovascular function [77, 115, 125]. Although
the density of VPAC1/2 and PAC1 receptors in coronary
artery is less than that in cranial MMA [115], arguing
for a limited role in cardiac ischemia, a protective role in
ischemic events has been described. Thus, considering
the increased cardiovascular risk that migraine patients
present [130–133], careful monitoring of patients with
preexisting cardiovascular risk factors is advised. How-
ever, similar concerns have been raised with the CGRP
(receptor)-antibodies [134, 135], with no cardiovascular
adverse events reported in the clinical trials [136].

Further considerations
If the antibodies against the PAC1 receptor prove to be
effective for the prophylactic treatment of migraine,
some concerns should be addressed. Firstly, as previ-
ously discussed, it is important to consider the possible
side effects of long-term blockade of PACAP/PAC1

Fig. 2 Possible side effects after long-term exposure to PACAP (receptor)-antibodies. An overview of the organ systems where PACAP and PAC1
receptor are present and the possible side effects that could be observed
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receptor, with emphasis on the cardiovascular system, as
migraine patients present a higher cardiovascular risk.
Therefore, safety studies in patients with cardiovascular
disease are needed. Moreover, the administration route
of the antibody against the PAC1 receptor is subcutane-
ous, thus erythema, pruritus and mild pain in the injec-
tion site could be expected, as it has been observed with
the CGRP (receptor) – antibodies [136]. Nevertheless,
the monthly administration represents an advantage for
treatment adherence.
It will also be important to define whether PAC1

receptor antibodies will really represent a therapeutic
advantage for the patients that are not responding to the
CGRP (receptor)-antibodies. Since studies have shown
that PACAP and CGRP co-localize in structures relevant
for migraine pathophysiology (e.g. trigeminal ganglion)
[49], PACAP blockade may only be effective for the
same patients to whom CGRP blockade is already effect-
ive. If a distinction can be made between patient groups
this would also shed light on the pathophysiology of mi-
graine, as it could distinguish between CGRP-associated
or PACAP-associated migraine patients. Moreover, the
PAC1 receptor sequence that is recognized by the
antibody has not been disclosed, thus, the variants of the
receptor to which the antibody binds are not known. If
revealed, it would be interesting to study whether certain
receptor isoforms predispose patients to present mi-
graine, or whether the treatment will only be effective in
patients with those isoforms.
Finally, as mentioned previously, it is still too early to

rule out VPAC1/2 receptors as therapeutic targets for mi-
graine treatment. Therefore, ALD1910, the antibody
against PACAP38, currently undergoing preclinical stud-
ies [128], broadens the therapeutic options for migraine
treatment. However, further safety studies should be ad-
dressed, as blocking PACAP38 would inhibit the actions
of three different receptors, increasing the possibilities of
adverse side effects.

Conclusion
The possible role of PACAP/PAC1 receptor blockade as
migraine treatment has been reviewed. All three PACAP
receptors have been described in TG, TNC and (dural)
arteries, structures previously related to migraine patho-
physiology [47, 49]. Indeed, infusion of PACAP is able
to induce migraine-like attacks [109]. Moreover, inter-
ictally, low plasma levels of PACAP have been de-
scribed [105], while during a migraine attack, PACAP
increases in jugular and cubital blood [105, 108] and
decreases as headache ameliorates after sumatriptan
administration [108].
Clinical studies have shown that infusion of VIP does

not induce migraine-like headaches [114], therefore, it is
considered that the possible receptor involved in PACAP

actions is PAC1 receptor, as VIP has affinity for VPAC1

and VPAC2 receptors; although this could be attributed
to pharmacokinetic (i.e. half-life), rather than pharmaco-
dynamic aspects. Pharmacological characterization in
preclinical studies has provided contradictory results, in-
dicating a complex pharmacology of the PAC1 receptor
[21, 22]. However, a recent in vivo study showed that
intravenous infusion of PAC1 receptor antibody, inhib-
ited evoked nociceptive activity in the trigemino-cervical
complex in rats, and these results were comparable to
the inhibition observed with sumatriptan [123]. These
results have led to the development of antibodies against
PACAP (ALD1910) and PAC1 receptor (AMG 301) for
migraine treatment.
In conclusion, the data presented in this review indi-

cate that PACAP and PAC1 receptor blockade are prom-
ising migraine therapies but results from clinical trials
are needed in order to confirm their efficacy and their
side effects profile.
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