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Abstract

The fifth cranial nerve is the common denominator for many headaches and facial pain pathologies currently
known. Projecting from the trigeminal ganglion, in a bipolar manner, it connects to the brainstem and supplies
various parts of the head and face with sensory innervation. In this review, we describe the neuroanatomical
structures and pathways implicated in the sensation of the trigeminal system. Furthermore, we present the current
understanding of several primary headaches, painful neuropathies and their pharmacological treatments. We hope
that this overview can elucidate the complex field of headache pathologies, and their link to the trigeminal nerve,
to a broader field of young scientists.
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Introduction
Considering that the classification of headache disorders
(ICHD-3) contains almost 300 different types of head-
aches and facial pains [1], it is quite surprising that a
large part of pathophysiological mechanisms rely on the
same anatomical basis. Since the early work by Harold
Wolff and his contemporaries [2] it has been shown that,
among intracranial structures, only the dura mater, its
vessels and the cerebral blood vessels are pain sensitive
and can show referred pain on various extracranial posi-
tions [3]. This classical view was recently expanded by
an observational study [4] to include pia mater and its
cortical arterioles as potential pain sensitive structures.
Subsequent neuroanatomical and neurochemical studies
revealed that most sensory fibres from the intracranial
and the extracranial tissues originate in the fifth cranial
nerve (CN V) ganglion, also called trigeminal ganglion

(TG). However, not all intracranial sensory fibers are tri-
geminal. For example, the posterior cranial fossa, is
mainly innervated by the occipital nerves.
Depending on which part of the head is innervated the

fibres can be traced back to different parts of the TG [5].
In general, headache pain is referred to a cutaneous ter-
ritory area on the scalp, sharing supply with a nerve in-
nervating the intracranial area, which might be the
actual source of pain. Similarly, pain can be referred to a
different territory than the actual nerve receiving the
painful stimulation. This can happen if the two nerves
share a high-order neuron (a process called
“convergence”).
Primary headaches comprise the most prevalent group

of neurological disorders. Among these, migraine is esti-
mated to be present in 14.4% of the global population
[6]. The WHO ranks migraine as the most prevalent,
disabling, long-term neurological condition when taking
into account years lost due to disability in young individ-
uals [7, 8]. The burden on individuals and society is
enormous [9], especially if other headaches such as
tension-type (TTH), the second more common disorder
worldwide [7, 8], and medication-overuse headache
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(MOH) are taken into account. Though TTH is more
prevalent (26.1%) [6], migraine is the more debilitating,
as migraine has been reported to contribute 16.3% of
disability-adjusted life-years on the global burden of
neurological disorders [10]. The present work is a com-
prehensive description of various aspects of the CN V,
the largest of the cranial nerves. Its more common name
“trigeminal” (triplet) derives from its clearly visible div-
ision into three main branches (Fig. 1). In this review we
explore the trigeminal nerve, its related pain conditions
and current treatments to emphasize its importance to
headache pathophysiology.

The Trigeminovascular system
The vascular system of the head, face, meninges and the
brain have a variable innervation of autonomic and sen-
sory nerves [12]. In general, the arterial system is richly
supplied with sensory nerves whereas the veins are
weakly innervated. Capillaries are not innervated. For
the cerebral vasculature, it is different; while the pial or
extracerebral arterial system is richly supplied, once the
vessels penetrate into the brain parenchyma their auto-
nomic and sensory fibres disappear (at the level of the
space of Virchow), as these are regulated by metabolic
demand [13].
The trigeminovascular system has long been a focus of

elucidating primary headache pathophysiology [14]. It

consists of the trigeminal neurons innervating the cere-
bral arteries, the pial and dural blood vessels, and si-
nuses [15]. Nociceptive activation of C- and Aδ-fibres
innervating these structures is thought to be involved in
the headache phase of migraine. The cranial dura mater
nerve fibres are mainly supplied by the ophthalmic
branch (V1), though collaterals from the maxillary
branch (V2), the mandibular branch (V3) and cervical
root ganglion provide dural innervation to smaller cau-
dal regions. Afferents from the TG carry this nociceptive
information into the brainstem where they mainly ter-
minate at second order neurons inhabiting the trigemi-
nocervical complex (TCC) [15].
Studies have shown that parts of the trigeminovascular

system (notably TG) lack blood-brain barrier (BBB) and
has been hypothesized being the target tissue where
some anti-migraine drugs (e.g. monoclonal antibodies,
gepants, triptans) elicit their effects [16]. Because of this
evidence it is likely that CN V is an integral part in un-
derstanding headache pathophysiology [17].

The trigeminal ganglion
Shortly after CN V protrudes from each side of the su-
perior lateral pons the TG can be found residing in each
of Meckel’s caves (Fig. 2). The TG has been termed a
“central hub” in the trigeminovascular transmitting path-
way as it contains the soma of the peripheral nerves able

Fig. 1 Schematic of the Trigeminal System. a: The somatotopic distribution of trigeminal nociceptive afferents terminating in the trigeminal
nucleus caudalis [11]. b: Innervation of facial skin areas and its related three branches (V1, V2 and V3). PSN (Principal sensory nucleus CN V), MN
(Mesencephalic nucleus CN V), PA (Spinal nucleus of CN V Pars Oralis), PI (Spinal nucleus of CN V Pars Interpolaris), PC (Spinal nucleus of CN V
Pars Caudalis). N. = Nerve. G. = Ganglion
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to activate superior order sensory neurons inhabiting the
TCC which in turn progress the signal to the thalamus
and finally cortex.
Interestingly, in an experimental rat study [18], injec-

tion of a retrograde tracer in various facial regions could
be traced to specific neuron clusters in the TG. The in-
jections were made into regions correlating to the V1
(eyebrow or directly on the eye), V2 (whisker pad) and
V3 (temporomandibular joint capsule). When examined,
the tracer could be located in TG neuron somas reveal-
ing an organisation of the ganglion and a potential origin
for each branch (Fig. 2) [18, 19].
The pseudo-unipolar neurons of the TG are impli-

cated in a variety of sensory and nociceptive stimuli, in
the craniofacial region, including mechanical, chemical
and thermal inputs [20, 21]. In the TG, small neurons
process the action potentials of peripheral noxious stim-
uli carried by afferent C- (unmyelinated) and Aδ-fibres
(thinly myelinated), which are believed to convey the
nociception of headache [14, 21]. The larger diameter,
myelinated fibres are, on the other hand, mainly respon-
sible for tactile stimulation processing [22] and also
known as low-threshold mechanosensitive afferent Aβ-
fibres [23–25] that normally do not mediate pain [23].
Applying microscopy, many morphological features of

the TG have been described including: the composition
of the neuron-glia unit (NGU), nerve bundles and extra-
cellular matrix with microvessels, nerve fibres, together
with occasional mast cells and stromal cells [26] that are
all dependent on each other [27]. The NGU consists of
one to three neuronal cells enveloped by a discontinuous
sheath of satellite glial cells (SGC) [26]. Electron

microscopy further shows that Schwann cells comprising
the myelin sheath combined with microvessels with
endothelial cells and to some extent pericytes. The ab-
sence of astrocytes could explain why the TG lacks a
proper BBB [14, 21, 26].
The sensory fibres innervating intracranial vessels have

their origin in the TG and they store a number of neuro-
transmitters, with the most prominent being glutamate,
and neuropeptides, including dynorphins, Calcitonin
Gene-Related Peptide (CGRP), serotonin, amylin, sub-
stance P, neurokinin A/B, Pituitary Adenylate Cyclase-
Activating Polypeptide (PACAP). Receptors for these
signalling molecules are expressed on peripheral and
central structures, and importantly on the TG neurons
themselves [14] (for a more detailed review see [28]).
Furthermore, these signalling molecules are pivotal in
cellular communication for pain processes (e.g. induc-
tion or central/peripheral sensitization), and therefore
also in headache perception.
Migraine and cluster headache pain seem to rely on

the CGRP pathway in the trigeminovascular system as
vastly demonstrated (for a review on the subject see [14,
29]). As the TG is lacking a proper BBB [30], and has a
high density of CGRP receptors accessible for anti-
migraine drugs (e.g triptans and anti-CGRP directed
drugs), the TG could represent a common denominator
for headache and craniofacial pain processing and a pref-
erential target for treatments.
The SGCs form a cellular layer covering almost all

sensory neurons in the TG and similar to the astrocytes
of other regions of the nervous system, ensure metabolic
support, glutamate regulation and ionic balancing. The

Fig. 2 Left: Superior perspective of a dissected male rat displaying both Meckel’s caves containing the trigeminal ganglion (TG). Right: TG and
parts of its main branches. Insert: Hematoxylin-eosin staining of rat TG displaying neuron (darker areas) locations and their approximate
branch affiliation
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role of SGCs in neuropathic pain has been shown to be
involved in the sensorial malfunctioning leading to “mal-
adaptive” plasticity [31–35] that are responsible for
chronification process widely described in common
forms of headache (e.g. migraine) [36].
In particular, the regulation of extracellular potassium

concentrations and consequently the utilization of ATP
by specific ATP-ase pumps seems to be one of the regu-
lator mechanisms of pain attributed to SGCs [32, 37].
Also, SGCs could modulate the purinergic system in the
TG through vesicular nucleotide transporters (VNUT)
[38]. In fact, all the purinergic receptors are expressed in
the TG [39]. Purinergic signalling has two-sided effects
in the TG. ATP release and the following purinergic ac-
tivation, after peripheral noxious perineural stimulation,
activate both SGCs and neurons in TG [34, 38]. This
contrasts to the breakdown product ADP, which instead
leads to trigeminovascular deactivation [40].

Anatomy of the fifth cranial nerve
The ophthalmic branch (V1)
The V1 nerve is the first branch of the trigeminal nerve
in rostral-caudal order. From the TG it crosses the side-
wall of the cavernous sinus and then passes through the
superior orbital fissure into the orbit, where it divides
into three terminal branches: the lacrimal nerve, the
frontal nerve and the nasociliary nerve. These large
branches in turn branch off to form smaller and ultim-
ately terminating sensory nerves (e.g the frontal nerve
branches off to form the supratrochlear nerve while the
nasociliary nerve branches off to form the infratrochlear
nerve and the anterior ethmoidal nerve, the latter further
forming external nasal nerves).
The V1 is a sensory nerve that innervates the upper

part of the face and the two thirds of the anterior scalp,
from the level of the palpebral fissures to the area of the
coronal suture [41]. The terminals of the lacrimal and
nasociliary branches provide the somatic sensation from
the eye structures, so that damage of these nerves impair
the corneal reflex. The V1 branch provides both superfi-
cial and autonomic sensory innervation to the ciliary
body, lacrimal gland, conjunctiva, cornea and iris, albeit
they do not originate from the trigeminal nucleus but
from the superior cervical ganglion and the sphenopala-
tine ganglion (SPG). The former provides sympathetic fi-
bres for the dilatator pupillae that run in the nasociliary
branch, the latter provides parasympathetic fibres for the
lacrimation partially running in the lacrimal branch of
V1 [42, 43].
Furthermore, V1 supplies intracranial structures sensi-

tive to pain, the superior part of the nasal cavity, medial
orbital roof, crista galli, and the dura mater meninges,
cerebral arteries in the circle of Willis [44], and, through
the tentorial nerve of Arnold, reaching the traverse and

straight venous sinuses [45]. Noxious stimuli to the
intracranial sensory receptors are transduced predomin-
antly by the ophthalmic branch because the maxillary
and mandibular branches, or cervical dorsal root ganglia,
provide the innervation of only a limited extent of the
meninges [46–50]. This likely explains why the majority
of headache present as painful sensation in this territory.

The maxillary branch (V2)
The V2 nerve is the second branch of the trigeminal
nerve. It reaches intracranially the dura of the middle
cranial fossa, the upper teeth and the related oral gin-
giva, the palate and mucous membranes of the maxillary
sinuses and nasal cavity [51]. Postganglionic parasympa-
thetic neurons from the SPG (innervated by TG fibres)
reach the lacrimal gland trough V2 branches, where they
mix with homologous fibres coming from V1. Similarly,
sphenopalatine branches supply intramural glands of the
nose and the hard palate.
As a sensory nerve, V2 innervates the skin of the lower

eyelid, the sides of the nose, nasolabial fold, upper lip
and the cheek.

The mandibular branch (V3)
The V3 nerve is the largest of the three branches of
the trigeminal nerve in humans. V3 passes between
tensor veli palatini and lateral pterygoid and gives off
a meningeal branch (nervus spinosus, so called be-
cause it passes through the foramen spinosum) and
the nerve to medial pterygoid from its medial side.
The continuation of the mandibular nerve then splits
into an anterior and a posterior trunk. The anterior
trunk gives off branches to three major muscles of
mastication and a buccal branch, which provides sen-
sory innervation to the cheek. The posterior division
gives off three main sensory branches, the auriculo-
temporal, lingual and inferior alveolar nerves and
motor fibres to supply mylohyoid and the anterior
belly of the digastric muscle [52].
The V3 branch innervates a territory of skin covering

the posterior part of the temporal region, the anterior
part of the earlobe, the anterior and superior walls of the
external ear canal, the lower lip and the chin. Its muco-
sal territory covers the anterior two-thirds of the tongue,
the medial aspect of the cheek and the floor of the oral
cavity, the gingiva, and the mandibular alveoli and teeth.
As previously mentioned, the V3 branch also carries tri-
geminal motor fibres that innervate the masticatory
muscles (masseter, temporal, internal and external ptery-
goid, mylohyoid, anterior body of the digastric and the
tensor palati) controlling biting and chewing mecha-
nisms [53].
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The Trigeminocervical complex (TCC)
The first order sensory neurons of the TG project cen-
trally to the trigeminocervical complex (TCC) in the
brainstem. The TCC includes the second order neurons
of the trigeminal sensory pathway inhabiting the trigemi-
nal nucleus caudalis (TNC) and C1 and C2 segments of
the cervical spinal region [54]. While historically consid-
ered as two separate entities, recently the trigeminal sys-
tem has been considered both as a morphological [5]
and a functional ensemble with first cervical roots [55].
The part of the TNC dedicated to pain perception is the
lower part, the Pars Caudalis (PC), while rostral parts
are mainly deputed to tactile perception. This pain spe-
cific part of the TNC extends from C2 or C3 rostrally to
the level of the obex. The TNC has many cytoarchitec-
tural similarities with the posterior horn. For this reason,
it has been termed “medullary posterior horn” and has
been divided into layers that correspond to Rexed spinal
cord laminae [56]. The TNC and the posterior horn also
show homology in the distribution of neurotransmitters;
substance P and CGRP are localized in nociceptive C-
fibres that terminate in both of these areas [56]. The
most superior area of the TNC is the inferior medulla
and the most inferior area is the upper cervical spinal
cord [57]. The spinal trigeminal nucleus is a sensory
tract located in the lateral medulla of the brain stem and
descends to the caudal end of the medulla and into the
spinal cord (as far as the third or fourth cervical level),
where it becomes continuous with Lissauer’s tract [58]
and takes sensory information from different cranial
nerves, including the trigeminal nerve and its branches
[54].
The innervation of the face forms a somatotopic map

in the TNC, which is stretched and distorted into the
proportions of the PC of the spinal trigeminal nucleus
(Fig. 1a). The area of lips and perioral area constitute the
outermost layer of the onion meaning that they lie
within the most superior area of the TNC [57]. The next
innermost layer lies inferiorly within PC and comprises
the projections of nose, eyes, and outer oral areas. The
V1 branch travels in the most ventral part of the spinal
tract and extends caudally. The V2 branch lies in the
most dorsal part of the trigeminal nucleus caudalis and
terminates in the most rostral level [54]. In the lowest
part, there are areas reserved to cheeks and forehead;
then the vertical area of the ears; and finally the partial
sensory innervation of the external ears (from cranial
nerves VII, IX, and X) [57]. This pattern of termination
may account for the onion skin pattern of facial sensory
loss with intramedullary lesions [54]. The TNC that runs
medial to the spinal trigeminal tract, also has an onion
skin somatotopy, and divides into three different cyto-
architectural regions: Pars Oralis (PO), Pars Interpolaris
(PI) and PC. PO is the most superior nucleus, running

from the pons to the mid-medulla. PI is the middle nu-
cleus, spanning in the mid-medulla. PC is the most in-
ferior nucleus from the lower medulla to the upper
cervical spinal cord. Its inferior extent is variably listed
from C2 to C4 [57].
Pradier and McCormick reported in their study, based

on electrophysiological characteristics of neurons of the
TNC, that there are five main groups of neurons, includ-
ing; tonic, phasic, delayed, H-current and tonic-phasic
neurons, groups that exhibit distinct intrinsic properties
and share some similarity with groups identified in the
spinal dorsal horn [59]. The primary function of the
TNC is to carry information on temperature, deep or
crude touch (PO and PI), and pain from the portion of
the face (PC) [54]. Afferents from the TNC terminate at
third-order neurons inhabiting the thalamus (mainly
posterior and ventral posteromedial thalamic nuclei) [58,
60].
In addition to this major pathway, TCC is also respon-

sible for conveying sensory and nociceptive signalling
from the meninges and craniovascular structures to sev-
eral higher order relays. There are numerous direct as-
cending connections within the medulla (e.g. medullary
pontine nuclei including the rostral ventromedial me-
dulla), brainstem (e.g. nucleus raphe magnus, parabra-
chial nucleus and locus coeruleus), midbrain nuclei (e.g.
ventrolateral periaqueductal gray and cuneiform nu-
cleus), and diencephalon (e.g. hypothalamus and thal-
amus) [54, 58].
Activation of these structures are believed to contrib-

ute to the perception of pain during migraine, and also
to autonomic, endocrine, cognitive and affective symp-
toms that last throughout the migraine episode [54].
Furthermore, the second order neurons receive inputs
from the occipital nerve. This convergence may have
treatment implications for some primary headache con-
ditions as well as referred pain.

Trigeminohypothalamic tract and the parabrachial-limbic
tract
Although a detailed description of these relay-functions
lies outside the purpose of the present review (for details
see [61, 62]), we will briefly discuss the trigeminohy-
pothalamic tract and the parabrachial-limbic tract.
The trigeminohypothalamic tract originates from spe-

cific nociceptive, multimodal intensity-coding wide dy-
namic range (fundamental for pain “gating effects”) and
non-nociceptive neurons, albeit about the 80% of its fi-
bres are axons from nociceptive neurons [61]. The trige-
minohypothalamic tract ascends contralaterally in the
brainstem but about half of the fibres present a decussa-
tion in the lateral hypothalamus, reaching both lateral
and medial structures of hypothalamus (e.g. prefornical,
suprachiamatic, supraoptic nuclei). While non-
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nociceptive information are transmitted only by direct
pathway, nociception is carried both directly and indir-
ectly (i.e. trigeminoreticular tract) to hypothalamus, sug-
gesting a more resistant mechanism to pathological
noxae for nociception [62]. Receiver areas of the hypo-
thalamus are those regulating homeostasis and integrat-
ing pain with visceral afferent input [63].
The trigeminoparabrachial tract is a polysynaptic path-

way connecting CN V to the limbic system, with direct
tracts ending in the amygdala, lenticular nucleus, nu-
cleus accumbens and it is thought to exert, among other
functions, the transmission of visceral pain and the emo-
tional value of pain sensations [62, 64]. The parabrachial
nucleus, in fact, contains a large share of neurons ex-
pressing both CGRP and PACAP, especially in its lateral
portion, which is the one activated by painful stimula-
tion [65–67]. The transmission of CGRP is thought to
reach directly the limbic system, where it can mediate
aversive behaviour or freezing, as demonstrated in mice
with injection of CGRP into the insula region [68].

The trigeminal system in primary headache
conditions
In the headaches most commonly seen in specialized
units (e.g. migraine, TTH, trigeminal autonomic cepha-
lalgias (TACs)) the pain generating mechanism resides
in the complex relationship between trigeminal system
and intracranial structures sensible to pain (mostly ves-
sels and meninges). For this reason, the functional en-
semble of the trigeminovascular system is quite relevant
for the understanding of head and facial pain patho-
physiology. We will now continue to describe some of
the more notorious headache and facial pain diagnoses.
Other less common primary headaches, which are not

explored in this article, that also might affect the trigem-
inal area are: primary stabbing headache (head pain oc-
curs as a single stab or as a series of stabs), nummular
headache (characterized by small circumscribed areas of
continuous pain on the head), cold-stimulus headache (a
direct result of the rapid cooling and rewarming of the
capillaries in the sinuses leading), and external pressure
headache (external pressure on pain receptors or pain fi-
bres) [1].

Tension type headache
As previously mentioned, TTH is the most prevalent
primary headache [23, 69]. The definition of TTH can
be defined as a mild to moderate bilateral headache with
a steady non-pulsating pain which is unaffected by
movement and lasting 30min to 7 days [70]. Further-
more, TTH is not associated with nausea or vomiting
and can manifest with either photophobia or phonopho-
bia. The pathophysiological mechanism of TTH is not
yet completely clear and most likely multifactorially

determined. Central sensitization of the trigeminal nerve
seems to play an important role, especially in patients
with chronic TTH.
Patients with episodic and chronic TTH have a con-

siderably increased tenderness to palpation of pericranial
myofascial tissues [71]. This increased tenderness origi-
nates from muscles, fascia and tendons throughout the
pericranial region, probably due to sensitization of Aδ-
and C-fibres [71]. After a strong peripheral nociceptive
stimulus from pericranial myofascial tissues central
sensitization can occur; ineffective synapses can change
to effective contacts of low threshold mechanosensitive
afferent nerves and superficial second order nociceptive
neurons in the trigeminal nucleus, which usually receive
input from high threshold mechanoreceptors [25]. This
central sensitization may make innoxious stimuli more
aggravating to the pain modulating systems, resulting in
allodynia and hyperalgesia [23, 71].

Migraine
In migraine, intracranial vasculature is innervated by tri-
geminal fibres (see above for details). Intracranial sen-
sory receptors cover the rich plexus of meningeal
perivascular nerves of pial and dural blood vessels. Cur-
rently, this classical vascular theory, naming vasodilation
as the migraine pain generator, seems less reliable com-
pared to a theory focusing on central sensitization,
where activation of neuronal receptors is pivotal as ori-
gin of migraine pain. The current paradigm is supported
by evidence of hypothalamic activation [72] and the view
of vasodilation as an epiphenomenon rather than a caus-
ation of pain [73–75]. Nevertheless, the current review
does not focus on the origin of the migraine attack, but
the origin of the perceived pain, which most likely re-
sides in the TG and the associated sensory fibers.
Whichever the trigger, the repeated experimental acti-

vation of the TG leads to release of vasoactive neuropep-
tides, such as substance P, CGRP [76] and PACAP [77].
CGRP and several other substances have been shown to
evoke headaches after intravenous administration both
in healthy subjects and migraineurs, and to trigger a de-
layed migraine-like attack in the latter group [78]. The
release of vasoactive neuropeptides from the peripheral
terminals of trigeminal nerve may result in neurogenic
vasodilatation, plasma extravasation and trigeminal
nerve sensitization, at least in rodents. It remains ques-
tionable whether the throbbing quality of migraine pain
and aggravation by head movements or routine physical
activity are expression of peripheral [79] or central
sensitization process [46].
In addition to the importance of the neuropeptide sig-

nalling, some of the transient receptor potential (TRP)
channels, which are identified in trigeminal ganglion,
vagal ganglia and in dorsal root ganglia could play an
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important role. Those superfamily of receptors expressed
in the trigeminal ganglion are mainly TRP vanilloid 1
(TRPV1) [80] and TRP ankyrin 1 (TRPA1) channels
which might be involved not only in pain initiations but
also as future treatment-targets in migraine [81].
TRPM8, which mediates the cold sensation has also
been linked to migraine pathophysiology by genome
wide association studies (GWAS), especially in the
northern population through a mechanism of evolution-
ary selection [82, 83].

Chronification, sensitization and habituation
Migraine is a progressive disorder and can transform
from an episodic state to a chronic state. According to
ICHD-3 [1], chronic migraine (CM) is defined as the
presence of headache for 15 or more days/month for at
least 3 months with migraine associated symptoms. A
well-accepted mechanism driving the progression from
episodic to CM is the peripheral sensitization of the pri-
mary afferent TG neurons, which leads to central
sensitization of TNC second-order neurons and ultim-
ately to central sensitization of third order neurons in
the thalamus [46, 84].
In a first phase of activity-dependent central

sensitization, the TNC neurons, under repetitive, persist-
ent nociceptive stimuli from the TG, become sensitized
and produce exaggerated and prolonged responses to
lower threshold stimuli. Over time, a neuroplastic adap-
tation in medullary and cortical pain areas causes a shift
in the pain modulatory system creating a new threshold
and favouring a net pain facilitation rather than pain al-
leviation. This shift to activity-independent central
sensitization plays a crucial role in the conversion to
CM [85, 86].
Based on experiments by Burstein et al, it is hypothe-

sized that cutaneous allodynia serves as a clinical indica-
tor of migraine chronification. Particularly, the
development of cutaneous allodynia in the head indi-
cates that central sensitization affects mostly neurons in
TNC, while the whole-body allodynia is mediated by the
central sensitization of third-order neurons, suggesting a
thalamic involvement [87]. On a molecular level, the
interictal levels of trigeminal CGRP are significantly ele-
vated in patients with CM when compared to those with
episodic migraine [88]. Interestingly, recent reviews pro-
posed an interaction between CGRP and inflammation
[89]. This process finally leads to increased production
of pro-inflammatory mediators, which sensitize TG neu-
rons [76, 90]. One example is the activation of TG neu-
rons by peripheral (dural) inflammation [91], which
mimics some of the features of CM.
NMDA-receptors, nitric oxide, and endogenous sub-

stances such as serotonin, bradykinin, substance P and
CGRP are involved in the development of this central

sensitization of the trigeminal nucleus and spinal dorsal
nucleus [23, 24, 92]. Central sensitization, e.g. of the tri-
geminal nucleus will induce an increased pain transmis-
sion signal to the thalamus, limbic system and sensory
cortex. The descending pathways of the rostral ventro-
medial medulla will facilitate the sensitized nociceptive
second order neurons of the trigeminal nerve [71]. Al-
though the majority of studies focused on migraine, the
chronification mechanism of TTH seems to be not so
different [71].
Sensitization has received the most interest in primary

headaches and pathologies of the fifth cranial nerve.
However, Groves and Thompson already in 1970’s pro-
posed a “dual-process” theory [93]. The basis of this the-
ory was based on the balance between depression
(habituation) and facilitation (sensitization). Unlike
sensitization, the neural mechanisms underlying habitu-
ation remain poorly understood [94].
Abnormal habituation patterns in migraineurs still

lacks a definitive consensual interpretation. Nevertheless,
there are some suggestions in the literature that central
habituation could play a role in cluster headache (CH)
and episodic migraine. For CH a habituation deficit of
brainstem reflex responses has been observed [95]. Re-
garding episodic migraine, it was found that controls
had a habituation response to repetitive sensory stimula-
tion in contrast to migraine subjects. Therefore, it seems
that amplified information processing from spinal tri-
geminal relay nuclei is linked to an impaired habituation
response in migraineurs [96]. The cellular/physiological
origin of these responses remains to be determined.

Medication overuse headache
Medication overuse headache (MOH) is considered a
secondary headache, with significant implications to pri-
mary headache sufferers. MOH is defined as a pre-
existing headache (occurring at least 15 days/month)
worsening due to regular overuse of medication (used >
10–15 days/month depending on the medication) for
treatment of an acute or symptomatic headache for
more than 3months [97]. Medication overuse is the
major risk factor for chronification in all primary head-
ache forms, although the 80% of MOH patients have mi-
graine as original primary headache, a smaller part TTH,
and rarely post-traumatic headache [98].
Similarly to CM, in an MOH rat-model, persistent

triptan exposure produced cutaneous allodynia and cen-
tral upregulation of CGRP and neuronal nitric oxide
synthase (nNOS) [99, 100]. Moreover, reduced seroto-
nergic transmission seems to be involved in MOH devel-
opment [101], possibly through a facilitation of the
sensitization process via a maladaptive plasticity [98]. In
humans, common neurophysiological investigation of
central sensitization shows an abnormal cortical
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response to repetitive sensory stimuli, with an increased
response amplitude after low numbers of stimuli [102]
and a lacking habituation (which is instead normal in
chronic migraineurs without MOH) [102], suggesting an
altered plasticity.
A recent neurophysiological study investigating the se-

rotonergic tone, found a low baseline serotonergic tone
in chronic migraineurs with MOH, but it recovers after
a week following anaesthetic block of the greater occipi-
tal nerve. Moreover, the size of the recover positively
correlated with the clinical benefit after a month [103].

TACs: cluster headache, SUNCT and SUNA
Trigeminal autonomic cephalalgias (TACs) are rare, but
highly disabling primary headache disorders. The most
common of the TACs is CH, known for its severely
painful symptoms. Other subgroups of TACs are hemi-
crania continua (HC), paroxysmal hemicrania (PH),
short-lasting unilateral neuralgiform headache with con-
junctival injection and tearing (SUNCT) and short-
lasting unilateral neuralgiform headache with cranial
autonomic symptoms (SUNA).
The unifying pathophysiological mechanism for TACs

is the role of the trigeminal autonomic reflex with para-
sympathetic activation and clinical presentation with
strictly unilateral pain in the distribution of the trigemi-
nal nerve and cranial autonomic features ipsilateral to
the pain. Distribution of maximal pain in TACs is at the
first branch of trigeminal nerve (V1) > upper cervical
root (C2) > second branch (V2) > third branch (V3)
[104].
Evidence for the peripheral mechanisms in CH include

increased plasma levels of CGRP, PACAP [105] and
vasoactive intestinal peptide (VIP) during acute cluster
attack and even interictally [106]. Recently, a clinical
study with a monoclonal antibody against CGRP was
found positive in prevention of episodic CH [107]. Fur-
thermore the SPG has connections to the trigeminovas-
cular system, superior salivatory nucleus (SSN) and
posterior hypothalamus: all areas that have an important
role in the generation of CH attacks [108].
The last decade has brought more insight into patho-

genesis of TACs, but still it is controversial whether the
pain in TACs has a peripheral or central origin. Studies
using animal models have shown that activation of tri-
geminal nerve may lead to activation of parasympathetic
efferents, producing autonomic symptoms such as lacri-
mation, rhinorrhea and nasal congestion via the
trigeminal-autonomic reflex. The origin of the cells for
the parasympathetic autonomic vasodilator pathway is in
the pontine SSN. The efferent projection is predomin-
antly through the greater petrosal nerve, a branch of the
facial nerve, and its projection through the SPG.

All primary headaches can be presented with auto-
nomic symptoms to some degree, through reflex activa-
tion of the cranial autonomic outflow [109, 110]. A
parasympathetic outflow activation probably results from
stimulation of trigeminal afferents. In this trigeminal
autonomic reflex, SPG may have a considerable role: in
clinical studies, stimulation of SPG reduces intensity and
frequency of CH pain [111]. The cyclical recurrence of
the disorder (circadian and circannual rhythmicity), be-
havioural features, such agitation and restlessness, dur-
ing acute cluster attacks, as well recently study on
preictal and postictal symptoms in CH, led to theory of
the key role of hypothalamus.
Genetics and neuroimaging studies has implicated that

the brain and particularly the hypothalamus as a gener-
ator of TACs [109, 112]. Animal studies have shown that
there are direct hypothalamic-trigeminal connections
(trigeminohypothalamic tract), and bilateral descending
hypothalamic projections to the spinal trigeminal nu-
cleus [61]. Moreover, neuromodulation such as deep
brain stimulation of posterior hypothalamus, occipital
nerve stimulation, SPG stimulation has shown benefit to
resistant chronic CH. Furthermore, cutting the trigemi-
nal nerve root or ablative methods of TG does not re-
solve the pain in TACs [113].
In SUNCT and SUNA there are some similarities with

trigeminal neuralgia (TN) that imply the involvement of
neuropathic pain mechanisms, for example, the short-
lasting unilateral attacks of pain, the cutaneous trigger-
ing and the response to antiepileptic medications [114].
TN will be covered below as we move on to conditions
more plausibly linked to specific trigeminal nerve
branches.

Other painful conditionals of the trigeminal nerve
branches
The ophthalmic branch
Trigeminal Neuralgia (TN) is defined according to
ICHD-3 criteria, as “recurrent unilateral brief electric
shock-like pains, abrupt in onset and termination, lim-
ited to the distribution of one or more divisions of the
trigeminal nerve and triggered by innocuous stimuli” [1].
The International Association for the Study of Pain
(IASP) defines TN as “sudden, usually unilateral, severe,
brief, stabbing, recurrent episodes of pain in the distri-
bution of one or more branches of the trigeminal nerve”
[115]. TN is a challenging syndrome and a common
cause of head and facial pain, and usually along the dis-
tribution of the second or the third branch [116], there-
fore TN is covered in more detail below, as only a
minority of cases of TN involves the first division of the
trigeminal nerve.
Among the few secondary causes of headache in V1

are Tolosa-Hunt syndrome, orbital cellulitis, idiopathic
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intracranial hypertension and herpetic neuralgia. Dam-
age to V1 can cause complex syndromes, as paratrigem-
inal oculosympathetic syndrome (Raeder’s syndrome)
and recurrent painful ophthalmoplegic neuropathy
(RPON) [117]. Raeder’s syndrome is a constant, unilat-
eral pain caused by a disorder in the middle cranial fossa
or of the carotid artery. RPON is an uncommon disorder
with repeated attacks of paresis of one or more ocular
cranial nerves (commonly the 3rd), with ipsilateral head-
aches [1]. The headache features are similar to typical
migraine with frequent accompanying symptoms, such
as nausea, vomiting photophobia and phonophobia.
RPON is a diagnosis of exclusion. The differential diag-
nosis comprises all types of inflammatory or space-
occupying lesions in the parasellar region and in the
orbita [118].
One neuralgia that is linked to the V1 branch, is

supraorbital neuralgia, characterized by persistent pain
over the supraorbital region and medial region forehead
[119]. It may be differentiated from supratrochlear neur-
algia based on the topography of the pain, which can be
confirmed with anaesthetic blockade [120]. Lacrimal
neuralgia, is pain localized to the orbital and periorbital
area, and was first described in 2013 [121]. All of these
headaches are linked to V1, but little is known about
their molecular pathophysiology. This is also the case for
trochleodynia which is a spectrum of disorders charac-
terized by pain arising from the trochlear region [122]
and idiopathic ophthalmodynia [123] which is linked to
pain in the eyeball.
Pain due to a cavernous sinus lesion, which is usually

causing total ophthalmoplegia and being accompanied
by a fixed, dilated pupil [124] or compression on the
structures passing through the superior orbital fissure
[125] can due to the anatomy also compromise the V1
branch. Furthermore, many cranio-cervical structures
might present with facial pain and it is important always
to be sure that the pain is not better accounted for by
another diagnosis [1].

The maxillary branch
Pain conditions linked to the V2 branch vary from
mostly frequent TN to facial presentations of primary
headaches. The diagnosis of TN is clinical and depends
fundamentally on the description by the patient and
characterization of pain [126]. TN is typically a unilateral
condition, slightly, but significantly more frequent, on
the right side [127]. Contrary to secondary forms, clas-
sical TN includes idiopathic cases as well as those
caused by neurovascular compression, demonstrated by
magnetic resonance imaging (MRI) or surgery, deter-
mining morphological changes to the trigeminal nerve
root that represents about the 50% of cases. The exact

extent of this neurovascular conflict needed to induce
TN is still debated [128].
Classical TN may be purely paroxysmal, without con-

comitant continuous pain, or it may be with persistent
background pain.
For TN, patients may describe a trigger point that

elicits pain when touched: this could be interpreted as a
manifestation of an erratic hyperactive functioning of
the nerve. Furthermore, central causes have been pro-
posed, even if it is difficult to determine which of the
these changes are cause and effect: volume reduction in
somatosensory cortex, thalamus and other subcortical
areas has been observed [129], as well as functional con-
nectivity alterations were described in sensory trigeminal
pathways [130]. Sometimes trigeminal nerve atrophy can
be demonstrated in patients with TN by high-resolution
imaging and it is significantly correlated with the severity
of neurovascular compression [131].
Another important cause of facial pain in the V2 terri-

tory, which has been considered “the atypical counter-
part to trigeminal neuralgia” [132], is the persistent
idiopathic facial pain (PIFP), previously termed atypical
facial pain or atypical odontalgia when occurring in the
oral cavity. PIFP is defined as a continuous facial pain,
typically localized in a circumscribed area of the face,
which is generally not accompanied by any neurological
or other lesion identified by clinical examination or clin-
ical investigations [132]. This facial pain, which occurs
daily and persists throughout the day, is generally de-
scribed as deep, poorly localized, and is not associated
with sensory loss or other neurological deficits, which
differentiates it from a pure neuropathic process. The
pathophysiology is not fully elucidated and possibly it re-
lies on a combination of neuropathic pain, central
sensitization, and local inflammation [132–134].
This complex pathophysiology is reflected by the diffi-

culty in treating PIFP successfully, and the concept that
different types of interventions are needed [135]. While
the large majority of case are idiopathic with investiga-
tions including X-ray of the face and jaws or cranial
computed tomography (CT) or MRI not demonstrating
any relevant abnormality, a part of PIFP-like disorders
can be secondary to dental or oral conditions [136–138].
Lastly, neuralgia of the infraorbital nerve (numb cheek

syndrome) is an unusual cause of facial pain, most often
associated with the V2 branch [139]. The pain can be
characterized by constant discomfort, often in the form
of stabbing pain, often accompanied with hypersensitiv-
ity to palpation in the infraorbital notch [140], and can
be linked to an underlying cancer [141].

The mandibular branch
A trigeminal nerve injury that mainly affects its V3
branch is characterized by acute paroxysmal painful
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episodes [142, 143] with a sudden onset that may involve
all the aforementioned structures [144]. The typical as-
sociated symptoms are PIFP or burning mouth like syn-
drome (BMLS) [145]. While PIFP can affects either V2
or V3, with a preference for the former, BMLS is defined
as a multifactorial chronic pain condition characterized
by a burning or stinging sensation, often accompanied
by xerostomia and preferably located on the tongue or,
in a lesser extent, other specific areas of the mouth, in a
clinically healthy oral mucosa [146]. The epidemiology
varies from 0.01% to 40% according the studies, gener-
ally observed in middle-aged patients and postmeno-
pausal women [147, 148].
No definitive aetiology has been established for burn-

ing mouth syndrome, an intramural burning sensation
for which no medical or dental cause can be found: both
central and peripheral nervous systems seem to be in-
volved and some studies suggested a trigeminal small
fibre sensory neuropathy in innervation territory of max-
illary nerve [149]. The diagnosis is generally reached
after a series of tests, including neurophysiological evalu-
ation and peripheral lingual nerve anaesthetic block,
allowing the distinction between peripheral and central
forms (for a review, see [150]). Therapeutic options re-
main however low, with only topical or systemic low-
dose clonazepam as a valuable treatment [151, 152].
Topical capsaicin or saliva substitute are second line op-
tions in peripheral forms, while amitriptyline or gaba-
pentin are considered in central form [150].
One of the most “dangerous” neuralgias is the “Numb

chin syndrome” which can occur from a lesion anywhere
along the course of the trigeminal nerve. Typically it
represents loss of the terminal and sensory branch of the
mandibular branch and is often linked to cancer, such as
metastatic tumours [153].
Finally, temporomandibular disorders are also linked

to the V3 branch [154]. TN can be differentiated from
temporomandibular joint dysfunction by the acute, pier-
cing, and stabbing nature of neuralgic pain occurring at
a single facial location, spreading along the course of the
nerve on one side, leading to differences in the character
and intensity of the pain [155].

Treatments targeting the trigeminal nerve
Acute treatments
Although many new therapeutic targets are under inves-
tigation [156], the most frequently used acute treatment
for headaches are non-specific drugs, such as NSAIDs.
Cyclooxygenase 1 and 2 (COX-1, COX-2) inhibitors

have peripheral effect on prostaglandin synthesis in-
volved in inflammatory processes. Acetylsalicylic acid is
found to have additional inhibitory effect on the central
trigeminal neurons after sagittal sinus stimulation [157].
Ketorolac (a nonselective COX-inhibitor) was found to

prevent sensitization at the trigeminal nucleus neurons
[158]. COX-2 inhibitor piroxicam showed good effect in
PH and celecoxib in HC [159].
It has been shown that some TACs (e.g. PH) respond

well to indomethacin. In a case study, the patient be-
came pain-free overnight after the use of indomethacin
after 12 years of failed treatments [160]. Indomethacin is
a COX-inhibitor that inhibits evoked firing in the TCC
in animal models [110]. Furthermore, indomethacin ex-
erts an effect on IL-1β induced prostaglandin E synthesis
via COX-2 in cultured rat trigeminal cells. Consequently
to the blockage of prostaglandin E release, the release of
CGRP was inhibited [161, 162]. According to studies,
indomethacin has higher odds of responders and
complete responders than any other treatment option in
HC and PH [159]. On the other hand, indomethacin can
also inhibit NO-induced vasodilatation. Contrary to NO-
induced CH-like and migraine-like headache that start
after a certain delay from NO administration, NO-
induced PH symptoms begin immediately after the ad-
ministration, and this can be the reason behind the dif-
ferent effectiveness of indomethacin [163].
Furthermore, there are a subcategory of headaches

that seem to response well to indomethacin, so called
“Indomethacin-responsive headaches”. These are sexual
headache, trocheodynia, Valsalva-induced headache, pri-
mary stabbing headache, hypnic headache and primary
exertion headache (also called exercise headache) [164].
This could be linked to inhibitory effect of indomethacin
on trigeminal nociceptive firing and the trigeminoauto-
nomic activation, which has been shown in animals by
Akerman et al. [165].
Ergotamine and dihydroergotamine were the first

specific acute antimigraine drugs in use for several de-
cades [166]. Ergot alkaloids are non-specific 5-HT1 re-
ceptor agonists that also bind α-adrenoceptors and
dopamine receptors. Therapeutic effect of these drugs
likely originates from their agonist properties at 5-HT1B

and 5-HT1D receptors that lead to trigeminal inhibition
by, for example, reducing CGRP release [167, 168].
Other previously proposed antimigraine mechanisms in-
clude constriction of large capacitance arteries, closure
of arteriovenous anastomoses, inhibition of neurogenic
inflammation, and blockade of transmission in the TNC
[169].
Triptans have been studied in the context of head-

aches for decades. They are potent 5-HT1B/1D receptor
agonists, a majority of them are also 5HT1F receptor ag-
onists [170]. There is evidence that triptans exert their
clinical effect peripherally by binding to 5-HT1B recep-
tors, resulting in slight vasoconstrictive properties as
well as blocking CGRP release and centrally by blocking
trigeminal transmission through binding at 5-HT1D re-
ceptors in the trigeminal nuclei of the brainstem [171].
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In addition to being important in treating migraine, trip-
tans (especially subcutaneous sumatriptan) are consid-
ered the most effective treatment in cluster headaches
[172]. Subcutaneous sumatriptan was reported to de-
crease pain significantly also in TN [173]. In clinical
practice, triptans are preferred to ergotamine derivatives,
because they are at least as potent, with better tolerabil-
ity and fewer side effects [158].
Ditans are selective 5-HT1F receptor agonists that

were developed in hope to increase the effectiveness and
to lower the risk of cardiovascular side effects of trip-
tans. 5-HT1F receptors are located in both peripheral
and central sensory trigeminal neurons, and their activa-
tion is found to hyperpolarize nerve terminals inhibiting
trigeminal impulses [174], inhibit the CGRP-mediated
vasodilation in vivo, modulate the pain perception path-
way and prevents CGRP release [170, 175]. Lasmiditan is
the only compound of this drug class that has been eval-
uated in Phase III clinical trials and approved by the
FDA [176]. It penetrates the BBB and could thus exert
effects centrally, in addition to the trigeminovascular
system [174].
Gepants antagonize the CGRP receptor in trigeminal

system. These drugs were promising in trials but were
discontinued due to low oral bioavailability (olcegepant)
and unexpected hepatotoxicity (telcagepant) [177]. How-
ever, ubrogepant and rimegepant tablets have both re-
cently received FDA approval (23rd December 2019 and
27th February 2020) for acute treatment of migraine in
adults [178].
Sodium channel blockers, such as lidocaine, blocks

sodium channels in a frequency-dependent and voltage-
dependent manner. The nerve block with lidocaine stops
the nociceptive firing and the neuronal hyperexcitability
in first order neurons reducing peripheral sensitivity
[179]. Intranasal lidocaine administered ipsilaterally to
the pain to anaesthetize the SPG, which is responsible
for the autonomic symptoms associated to TACs or
other headaches via the trigemino-autonomic reflex
[180]. Intranasal lidocaine is considered a second line
treatment for CH [181]. The most effective treatment of
SUNCT/SUNA acute attacks is considered to be intra-
venous lidocaine, subcutaneous treatment also can be
used [159]. Furthermore, TN studies have shown that
lidocaine, rubbed onto the trigger zone of the oral mu-
cosa, provided a few hours of pain relief [173].
Some voltage-sensitive sodium channel blockers, such

as lamotrigine or amides (carbamazepine, oxcarbazepine,
eslicarbazepine), are often the first line treatment for
some painful conditions affecting the trigeminal nerve,
and most likely they act by stabilizing neural membranes
and inhibit the release of neurotransmitters [182]. In a
Cochrane review (from 2013) it was concluded that
there was no reduced headache frequency from

carisbamate, clonazepam, lamotrigine, oxcarbazepine,
pregabalin, or vigabatrin [183]. However, carbamazepine
has shown some effect in familial hemiplegic migraine
[184]. Further studies are needed to determine the effi-
cacy of the newer drugs [185].
High-flow oxygen is considered a first line treatment

for CH [172, 181]. The mechanism of action of oxygen
in now thought to be related not to its vasoconstrictor
effect, but rather to the inhibition of neuronal activation
in the TNC [186]. Oxygen is also thought to normalize
the CGRP levels and thus reduce the activity in the tri-
geminovascular system [106].

Prophylactic treatments
CGRP released from trigeminal terminals results in vaso-
dilation via CGRP receptors on the smooth muscle cells
of meningeal and cerebral blood vessels [187] and activa-
tion of Aδ-fibres, with the possibility of inducing
sensitization [188]. Although antibodies can theoretically
target CGRP or its receptors in the brain regions, the
BBB permeability is low [189, 190]. Therefore their
therapeutic action may be entirely peripheral and likely
affecting targets within the trigeminovascular system
[191, 192].
Monoclonal antibodies acting on CGRP pathway,

with indications for migraine prevention, have been de-
veloped in recent years: one targeting the CGRP recep-
tor (erenumab) and three targeting the CGRP peptide
(eptinezumab, fremanezumab and galcanezumab) [193].
Fremanezumab inhibits activation of central trigemino-
vascular neurons with input from the intracranial dura,
but not the facial skin or cornea [194] providing evi-
dence that antibodies against CGRP can inhibit trigemi-
nal neuron activation. However, their site of action
along the trigeminal pathway remains uncertain, though
recently, axon-axon signalling at the node of Ranvier be-
tween C- and Aδ-fibres was suggested as a plausible site
of action [167]. A role for the trigeminal nerve in CH
and PH is indicated by the increased concentrations of
CGRP in the ipsilateral jugular vein during attacks [106,
195]. Galcanezumab was recently reported to reduce the
frequency of episodic CH attacks [107].
Onabotulinumtoxin A, beta blockers (e.g propran-

olol), tricyclic antidepressants (e.g amitriptyline), anti-
convulsants (e.g topiramate) and calcium channel
blockers (e.g flunarizine) continue to be standard therap-
ies for migraine prevention [196–198]. Though mainly
known for its therapeutic effects in CM, onabotulinum-
toxin A has been shown positive results in treating TN
[199] and refractory, chronic CH [200]. Onabotulinum-
toxin A modulates neurotransmitter release, changes in
surface expression of receptors and cytokines as well as
enhancement of opioidergic transmission [201]. This is
done by cleaving synaptosomal nerve-associated protein
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25 (SNAP-25), a vesicle docking protein, within the cell
and thus disrupting the fusion of neurotransmitter vesi-
cles to the synaptic cleft [202]. It is likely that onabotuli-
numtoxin A reduces both peripheral and central
sensitization through such mechanisms [203, 204].

Non-pharmacological treatments
There are currently several non-invasive and invasive
stimulation techniques that may help patients who wish
to avoid, are refractory to or intolerant of previous drug
therapies [108]. Non-invasive stimulation options in-
clude the supraorbital stimulation, vagus nerve stimula-
tion (VNS) and the single-pulse transcranial magnetic
stimulation [108].
The initial use of VNS to treat headaches first came

from the epilepsy field, following several anecdotal re-
ports of migraine improvement in patients with comor-
bid epilepsy who had been implanted with the device
[205]. The vagal nerve is a mixed motor and sensory
nerve that is important in controlling autonomic re-
sponses; it projects to several higher centres that are im-
portant in pain regulation [108]. Indeed, VNS was
sufficient to significantly inhibit nocifensive head with-
drawal response from mechanical stimulation of V1 tri-
geminal nociceptors [206]. The commercial use in
migraine therapy certainly came with the development
of portable devices, which allow to stimulate the vagal
nerve transcutaneously at the neck (GammaCore® de-
vice) or in its auricular portion (Nemos® device) in a
non-invasive way [205]. Possible uses for VNS is pre-
ventative treatment of CH, acute treatment of CH [207]
and preventive treatment of CM (controlled studies are
needed to investigate this point) [208].
The occipital nerves are a target for stimulation due to

the anatomical overlap between the trigeminal and cer-
vical afferents in the TCC [108]. This allows stimulation
of the occipital region to modulate pain in the trigeminal
distribution. Occipital nerve stimulation (ONS) is a sur-
gical procedure where electrodes are placed subcutane-
ously in the occipital region and then wired to a battery
pack in the chest or abdomen [108]. Open-label studies
have shown possible efficacy in preventing CM, chronic
CH [209]. Possible uses for ONS is preventative treat-
ment of refractory CM and chronic CH [108].
Trigeminal radiofrequency thermocoagulation

(TRT) is a surgical intervention used for the treatment
of TN. TRT involves puncturing the TG or its branches
with a CT- or X-ray-guided a radiofrequency thermo-
coagulation (RFT) ablation needle [210]. Sensory and
motor stimulation are used to replicate the patient’s pain
and locate and destroy the responsible nerve. Recurrence
is possible after RFT ablation; some patients need to
continue medication treatment, while others may require
reoperation, and postoperative facial numbness is a

notable problem combined with developing neuropathic
pain [210].
Peripheral nerve blocks (PNB) have been used for

the acute and preventive treatment of a variety of pri-
mary headache disorders [211]. PNB are generally safe
and well-tolerated procedures that may be performed in
the outpatient setting [211]. PNB can be used in primary
(migraine, CH, and nummular headache) and secondary
headaches (cervicogenic headache and headache attrib-
uted to craniotomy), as well in cranial neuralgias (tri-
geminal neuropathies, glossopharyngeal and occipital
neuralgias) [179]. This procedure can be necessary for
both diagnosis and treatment (e.g a PNB of the inferior
dental plexus will halt the pain caused by TN but not a
temporomandibular disorder), while in cases it is consid-
ered an adjuvant treatment [179]. Interestingly, a retro-
spective case-study reported long-lasting (1–8months)
and immediate pain-relief for refractory TN patients
treated with PNB [212]. This surprisingly long-lasting re-
sult (as the half-life of anaesthetics is usually brief) could
be due to the dose-dependent neurotoxicity of local an-
aesthetics [213].
The block of the greater occipital nerve with an anaes-

thetic and corticosteroid compound has proved to be ef-
fective in the treatment of CH. Regarding the treatment
of other headaches and cranial neuralgias, controlled
studies are still necessary to clarify the real role of per-
ipheral nerve block [179].
Although nummular headache is characterized by con-

tinuous pain in a small circumscribed area, it surpris-
ingly does not respond well to PNB [214], this contrasts
to the onabotulinumtoxin A, which seems effective
[215]. This suggests that there is difference in the mech-
anism of a nerve block, and the use of onabotulinum-
toxin A.

Conclusion
The involvement of the fifth cranial nerve in headache
has been thoroughly established, following the original
postulation by Wolff in the 1940’s. The current review
summarizes the anatomical and physiological link be-
tween headaches, pain perception and the fifth cranial
nerve. The most striking evidence comes from the nu-
merous treatments available, where their targets are al-
most exclusively found in the nerves of trigeminal
ganglion; the hub of the fifth cranial nerve. Although we
believe that the headache-trigger most likely have the
origin in the CNS, this review underscores the import-
ance of trigeminal neurons in the perception of pain.
Only when the activation of the fifth cranial nerve is
combined with knowledge of central pathological mech-
anisms, we can start to fully understand the pathology of
headache.
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COX: Cyclooxygenase; IL-β: Interleukin 1 beta; NO: Nitric oxide; 5-HT: 5-
hydroxytryptamine; FDA: U.S Food and Drug Administration; SNAP-
25: Synaptosomal nerve-associated protein 25; VNS: Vagus nerve stimulation;
ONS: Occipital nerve stimulation; TRT: Trigeminal radiofrequency
thermocoagulation; RFT: Radiofrequency thermocoagulation; PNB: Peripheral
nerve blocks
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