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Abstract

Background To gain a comprehensive understanding of the altered sensory processing in patients with migraine,
in this study, we developed an electroencephalography (EEG) protocol for examining brainstem and cortical
responses to sensory stimulation. Furthermore, machine learning techniques were employed to identify neural sig-
natures from evoked brainstem—cortex activation and their interactions, facilitating the identification of the presence
and subtype of migraine.

Methods This study analysed 1,000-epoch-averaged somatosensory evoked responses from 342 participants, com-
prising 113 healthy controls (HCs), 106 patients with chronic migraine (CM), and 123 patients with episodic migraine
(EM). Activation amplitude and effective connectivity were obtained using weighted minimum norm estimates
with spectral Granger causality analysis. This study used support vector machine algorithms to develop classification
models; multimodal data (@mplitude, connectivity, and scores of psychometric assessments) were applied to assess
the reliability and generalisability of the identification results from the classification models.

Results The findings revealed that patients with migraine exhibited reduced amplitudes for responses in both the
brainstem and cortical regions and increased effective connectivity between these regions in the gamma and high-
gamma frequency bands. The classification model with characteristic features performed well in distinguishing
patients with CM from HCs, achieving an accuracy of 81.8% and an area under the curve (AUC) of 0.86 during training
and an accuracy of 76.2% and an AUC of 0.89 during independent testing. Similarly, the model effectively identified
patients with EM, with an accuracy of 77.5% and an AUC of 0.84 during training and an accuracy of 87% and an AUC
of 0.88 during independent testing. Additionally, the model successfully differentiated patients with CM from patients
with EM, with an accuracy of 70.5% and an AUC of 0.73 during training and an accuracy of 72.7% and an AUC of 0.74
during independent testing.

Conclusion Altered brainstem-cortex activation and interaction are characteristic of the abnormal sensory process-
ing in migraine. Combining evoked activity analysis with machine learning offers a reliable and generalisable tool

for identifying patients with migraine and for assessing the severity of their condition. Thus, this approach is an effec-
tive and rapid diagnostic tool for clinicians.

*Correspondence:

Fu-Jung Hsiao

fujunghsiao@gmail.com

Full list of author information is available at the end of the article

©The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s10194-024-01892-2&domain=pdf

Hsiao et al. The Journal of Headache and Pain (2024) 25:185

Page 2 of 17

Keywords Migraine, EEG, Sensory processing, Brainstem, Primary somatosensory cortex, Primary motor cortex, Insula,
Spectral Granger causality analysis, Support vector machine, Machine learning

Introduction

Migraine is a highly prevalent neurological disorder
affecting more than one billion people worldwide. The
World Health Organization’s Global Burden of Disease
study reported a global age-standardised prevalence of
14.4% [1]. Patients with migraine experience consider-
able functional disability, particularly as the disorder
progresses from episodic migraine (EM) to chronic
migraine (CM); CM is defined by headaches occur-
ring > 15 days per month for >3 months [2]. This pro-
gression also leads to a considerable economic burden
[3]. Migraine is recognised as a complex brain network
disorder with a strong genetic basis, in which interac-
tions among various neuronal systems contribute to a
wide range of symptoms. Central dysfunctions play a
critical role in the neuropathology of migraine [4, 5],
particularly regarding the potential generators or medi-
ators of migraine attacks in the subcortical regions of
the brain.

In patients with migraine, alterations in sensory pro-
cessing often involve changes in the transmission and
processing of sensory information from the peripheral
nervous system to the brain [6]. Consequently, patients
with migraine frequently exhibit increased sensitivity
to sensory stimuli, such as touch, light, temperature,
and pain, leading to an exaggerated perception of pain
or abnormal pain responses, even to nonpainful stim-
uli. Neurophysiological and neuroimaging evidence
suggests that altered brainstem [7] and cortical activa-
tion [6], sensory habituation deficits [8], and abnor-
mal connectivity from subcortical areas, such as the
brainstem, to higher cortical areas may characterise the
impaired sensory integration and modulation observed
in patients with migraine. However, it remains to be
determined whether this atypical sensory process-
ing exhibits consistent characteristics across different
migraine phases, potentially serving as a distinct neural
signature for identifying patients with migraine.

Supervised machine learning (ML) approaches can be
used to diagnose migraine on the basis of its character-
istic changes in sensory processing [9]. Supervised ML
can also provide tailored recommendations, making it
suitable for routine use in clinical settings. Given its
affordability, wide availability, and potential for mobil-
ity and scalability to large patient populations, electro-
encephalography (EEG) combined with ML algorithms
may be particularly effective for establishing a migraine
classification model [10].

This study employed EEG to directly capture neural
activity, with an experimental design specifically devel-
oped for examining brainstem and cortical responses to
sensory stimulation [11]. We examined the changes in
the amplitude of the evoked responses in brainstem and
cortical regions as well as the oscillatory effective con-
nectivity between the brainstem and cortical regions
in patients with migraine, irrespective of the migraine
phase. To mitigate the effects of volume conduction
in EEG recordings, we conducted source-based analy-
ses through distributed source modelling, specifically
employing weighted minimum norm estimates (MNEs).
Classification models were used to identify the electro-
physiological and psychometric features associated with
the frequency of headache. These models differentiated
patients with CM and patients with EM from healthy
controls (HCs) and distinguished patients with CM from
patients with EM. To ensure generalisability, the mod-
els were validated using an independent testing dataset.
Additionally, this study aimed to reveal the signatures of
altered brainstem—cortex activation and interaction that
contribute to the neuropathology of migraine chronifi-
cation, providing an effective and rapid diagnostic aid in
clinical scenarios where migraine severity is challenging
to accurately assess.

Materials and methods

1. Participants

All participants were aged between 20 and 60 years, were
right-handed, had no history of systemic or major neuro-
logical disorders, and had normal results on physical and
neurological examinations. They were recruited from the
headache clinic at Taipei Veterans General Hospital. EM
and CM were diagnosed according to International Clas-
sification of Headache Disorders, Third Edition [2]. All
patients were naive to preventive migraine treatments.
The exclusion criteria were the overuse of headache med-
ications, as defined by the diagnostic criteria of medica-
tion-overuse headache [2], as well as the regular (daily)
use of migraine prophylactic drugs, hormones, or other
medications. None of the HCs had a personal or family
history of primary headaches, nor had they experienced
any significant pain conditions in the previous year. The
study protocol was approved by the Institutional Review
Board of Taipei Veterans General Hospital (VGHTPE:
IRB 2019-07-001B), and all participants provided written
informed consent prior to the study.
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2, Study design

All participants completed semi-structured question-
naires on their background characteristics. Moreover,
they received psychometric assessments, including the
Hospital Anxiety and Depression Scale (HADS) [12],
Perceived Stress Scale (PSS), and Pittsburgh Sleep Qual-
ity Index (PSQI). For patients with migraine, additional
information in terms of headache profiles, such as the
number of headache days per month (headache days),
disease duration (in years) since the onset of first head-
ache (disease duration), average headache intensity over
the past year (severity of last year), and number of acute
headache medications per month, was obtained. Fur-
thermore, the Migraine Disability Assessment (MIDAS)
questionnaire was administered to evaluate migraine-
related disability [13]. Following recruitment, all patients
maintained a headache diary, in which they recorded the
details of their headaches, including the date and time of
attacks, pain intensity, associated symptoms, medication
use (if any), and menstrual periods. For each participant,
EEG recordings were conducted on the same day they

1: SSEP Data Acquisition
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completed the questionnaires and provided demographic
information. Notably, dynamic changes in brain activa-
tion were observed across different migraine phases,
particularly during the preictal period [11]. Given the
difficulties in accurately assessing the migraine phase for
each patient in clinical scenarios, patients in the present
study were recruited regardless of their current migraine
phase to facilitate a more rapid diagnostic approach.

3. EEG recording and analysis

Figure 1 outlines the data acquisition and analysis pipe-
line. Scalp EEG data were recorded using a 64-electrode
BrainVision actiCAP system (Brain Products GmbH,
Munich, Germany), which adheres to the extended
International 10-20 system. In this system, for imped-
ance conversion, active circuits are integrated into the
streamlined actiCAP electrodes, providing superior sig-
nal quality even at higher impedance, compared with
conventional passive electrodes. Crucially, an electronic
circuit is integrated into each active electrode for per-
forming impedance conversion directly at the scalp,

2: SSEP Data Analysis
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offering the acquisition of high-quality EEG signals that
remain unaffected by extraneous noise or movements
possibly affecting the electrode cables. The electrodes
were referenced online to an electrode positioned at the
Fz plane, with a common ground connection established
at the FPz site. EEG signals were amplified and digitised
at a sampling rate of 1,000 Hz by using a BrainAmp DC
amplifier (Brain Products GmbH) that was interfaced
with Brain Vision Recorder software (version 2.1, Brain
Products GmbH). For the offline elimination of arte-
facts, electrooculography (EOG) and electrocardiography
(ECQ) recordings were simultaneously obtained.

For each participant, somatosensory-evoked poten-
tials (SSEPs) were elicited through an electrical stimu-
lation task. Participants received stimulation using a
Digitimer DS7A device (Digitimer, Welwyn Garden City,
Hertfordshire, UK), which delivered constant-current
square-wave pulses (0.2-ms duration, proximal cath-
ode) at a frequency of 4 Hz. The stimulation intensity
was set to twice the subjective sensory threshold of the
right median nerve at the wrist. Consistent with previ-
ous findings, no pain response or visible twitching of
the flexor digitorum superficialis was observed [14, 15].
Participants were comfortably seated in an illuminated
room and were instructed to remain awake with their
eyes closed during the stimulation. A total of 1,000 SSEP
epochs were recorded, and each trial comprised a 50-ms
prestimulus baseline period and a 100-ms poststimulus
period. According to a previous study [16], this num-
ber of epochs is sufficient to reliably capture subcortical
responses, particularly those from the brainstem.

To isolate source-based neural activity and to mitigate
the effects of volume conduction in EEG recordings, dis-
tributed current source modelling was performed using
depth-weighted MNEs [14, 15, 17]. This method enables
the precise localisation of the source, even for deep neu-
ral generators [18, 19]. The neuronal dynamics of both
cortical and subcortical sources were modelled using
a mixed brain model incorporating both volume and
surface scouts; the model can identify the characteris-
tic signal patterns produced by a unit dipole. This for-
ward model enabled the realistic distribution of current
dipoles across the neocortex and subcortical structures
[19]; this model is based on the symmetric boundary ele-
ment method (BEM) [20]. The model yields more accu-
rate results than spherical models. This study also used
the inverse operator from the MNE analysis to estimate
the distribution of the current sources of EEG signals.
This approach generated distributed and dynamic brain
activation maps that were reconstructed onto the surface
and volume models for each participant. Subsequently,
neural amplitude dynamics in the cortical and subcorti-
cal regions were extracted for further analysis. This study
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analysed time-varying current intensity in regions of
interest (ROIs), including the brainstem (volume scout),
bilateral insula, anterior cingulate cortex (ACC), pri-
mary motor cortex (MI), primary somatosensory cortex
(SI), and primary visual cortex (V1) (surface scout). All
current density values were transformed into z-scores,
reflecting deviations from baseline.

Spectral Granger causality analysis, which is an exten-
sion of Granger causality in the frequency domain, was
utilised in this study to determine whether one time
series can predict another at specific frequencies; thus,
this analysis can provide insights into the directional
influence between time series across different frequency
bands [21, 22]. This method yields valuable insights on
the mechanism through which directional interactions
occur between different brain regions at various frequen-
cies. In this study, source-based Granger causality analy-
sis in the frequency domain was conducted using the
MNE-derived intensity activities of the current sources
in each ROL The analysis was performed across frequen-
cies ranging from 1 to 200 Hz, with a resolution of 1 Hz,
and a Granger model order of <10 was employed. Cru-
cially, to explore ascending somatosensory processes, we
examined the causal relationships from the brainstem
to cortical regions—including the bilateral insula, ACC,
MI, SI, and V1—within the 10—30-ms time window after
stimulation.

All data analyses in this study, including preprocessing,
source modelling, amplitude measurement, and spectral
Granger causality analysis, were conducted using Brain-
storm software [23], as partially described in our previ-
ous studies [9, 11, 14, 15, 24, 25].

4. Machine learning and statistical analysis
Given that activation measurements and effective con-
nectivity analysis primarily focus on early sensory
processing, this study aimed to enhance migraine iden-
tification through multimodal data modelling. The mul-
timodal data included clinical scores related to emotion
and cognition, such as HADS, PSS, and PQSI scores.
Before model construction, feature selection is
essential for improving classification performance,
reducing computational complexity, and eliminating
irrelevant features. Therefore, in this study, univariate
analyses (independent ¢ tests) were applied to identify
discriminative features between the groups. These fea-
tures were then used to construct training and test-
ing datasets (Fig. 1). Notably, the training datasets
were derived from the multimodal data of 90% of the
participants, and the remaining 10% of the data were
applied as the independent testing datasets. This study
employed support vector machine (SVM) algorithms
to develop classification models for distinguishing
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HC vs. CM, HC vs. EM, and CM vs. EM. SVM algo-
rithms map input vectors into a high-dimensional
space for constructing a linear classification system.
By training the algorithm on the provided data, SVM
identified an optimal hyperplane that minimised clas-
sification errors and produced an effective model. The
supervised learning approach used to train the SVM
classifiers enabled the pairwise for examination of
the conditions, with appropriate kernel functions and
parameters. The selection of hyperparameter values
was automated through Bayesian optimisation.

To avoid overfitting, the classification models in
this study were trained using a 5-fold leave-one-out
cross-validation technique. Classification models were
developed and reconstructed using datasets contain-
ing three sets of features: (1) prominent amplitude
measurements from the brainstem and 10 cortical
regions, (2) significant spectral Granger causality val-
ues combined with amplitude measurements, and (3)
discriminative amplitude and spectral Granger causal-
ity values integrated with psychometric scores (HADS,
PSS, or PSQI). All ML analyses were conducted using
the Machine Learning Toolbox in MATLAB software
(R2023b).

The performance of each classification model was
assessed in terms of accuracy, sensitivity, specific-
ity, and the area under the curve (AUC). After model
reconstruction and evaluation on the training data-
set, the models were further validated with the testing
datasets to assess the generalisability of the identified
features (Fig. 1). The labels for the testing datasets
were blinded, and classification models were applied
to the discriminative features without further train-
ing. Predictive accuracy and AUC were then calculated
for each model. Shapley values were computed for
each classification model to quantify the contribution
of individual features to specific predictions [26]. The
Shapley values from models with satisfactory perfor-
mance were analysed to assess the importance of each
feature.

Furthermore, to examine the differences in activa-
tion and interaction between the brainstem and cor-
tex across groups (HC, CM, and EM), we conducted
a series of analyses. Activation amplitudes at spe-
cific time intervals in the brainstem were compared
between groups using analysis of variance (ANOVA),
as well as cortical activation within the selected ROIs
and time intervals. Additionally, Granger causality
values across distinct frequency bands were tested via
ANOVA. Bonferroni correction was applied for multi-
ple comparisons, and a corrected p-value of <0.05 was
considered statistically significant.
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Results

Demographic characteristics and clinical scores

of participants

This study included 342 participants—113 HCs, 106
patients with CM, and 123 patients with EM. The demo-
graphic and clinical characteristics of all participants
are summarised in Table 1. Three groups (HC, CM, and
EM) did not differ significantly in terms of age. However,
the HC group had a higher proportion of male partici-
pants compared to the other two groups. In the psycho-
metric assessments, anxiety (HADS_A) and depression
(HADS_D) scores were higher in the CM and EM groups
than in the HC group (HC vs. CM: p<0.0001 in the A
score, p<0.0001 in the D score; HC vs. EM: p<0.0001 in
the A score, p<0.0001 in the D score). Moreover, PSS and
PSQI scores were lower in the HC group than in the CM
and EM groups (PSS: p<0.0001 for HC vs. CM, p=0.001
for HC vs. EM; PSQI: p <0.0001 for HC vs. CM, p <0.0001
for HC vs. EM). Notably, PSQI scores were higher in the
CM group than in the EM group (p=0.0003). Regarding
the migraine profile, as expected, patients with CM had
more monthly headache days (p<0.0001) and a higher

Table 1 Demographics and clinical profiles of participants
(mean =+ std)

HC cM EM p-value
N 113 106 123
Age (years) 341+86 360+98 342+88 p=020
Sex 67 F/46 M 83F/23M  93F/30M  p=001
Psychometrics
HADS_A 43+33 79+34 71438 p<0001%
HADS_D 20427 62+36 53+34 p<00014
PSS 212+86 265+88 249+84 p<00017%
PSQI 38+25 88+37 71434  p<00017&%
Migraine profile
Headache days (/ - 198+55 66+43  p<0001”
month)
Disease duration - 172+93 154+£91 p=076
(years)
Severity of last year - 6.1+17 63+18 p=027
(0-10)
Number of acute 96+84 53+45 p<0001”

headache medica-
tions (/month)

MIDAS - 428+430 2144243 p<0001%

HC: Healthy control; CM: Chronic migraine; EM: Episodic migraine; F: female; M:
male;

HADS: Hospital anxiety and depression score; A: Anxiety; D: Depression; PSS:
Perceived stress scale;

PSQI: Pittsburgh sleep quality index; MIDAS: Migraine disability assessment
scores

", significant difference between HC and CM; & significant difference between
HCand EM;

% significant difference between CM and EM
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usage of painkiller (per month; p<0.0001) than patients
with EM. Furthermore, MIDAS scores were higher in
patients with CM than in patients with EM (p <0.0001).
However, the disease duration and severity in the preced-
ing year were comparable between the two groups.

Activation dynamics of brainstem and cortex

in response to stimulation

After 4-Hz electrical stimulation, the time-varying
evoked activities obtained were transformed into z-scores
for each participant and were then averaged across sub-
jects. The data for each group are presented in Fig. 2. The
waveform profiles were similar for the groups. However,
significant peak amplitude changes for the responses
indicated alterations in sensory processing in patients
with migraine. To compare activation strength between
the groups, the averaged amplitude values were extracted
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at specific time intervals, as follows: 11-15 ms and 16-21
ms for the brainstem and 16—21 ms and 25-30 ms for the
cortical regions. Compared with the HC group, the CM
and EM groups exhibited reduced brainstem responses
at 11-15 ms (HC: 0.784+0.122; CM: 0.317+0.139,
p=0.0122; EM: 0.371+0.134, p=0.0244). Additionally,
patients with CM exhibited weakened brainstem activa-
tion at 16-21 ms (HC: 2.126 +0.232; CM: 1.471 +0.238,
p=0.05).

In the cortical regions, patients with CM exhibited
decreased amplitudes at 1621 ms in the left insula (HC:
1.592+0.206; CM: 0.497 +0.259, p=0.0011) and left V1
(HC: 3.464+0.326; CM: 2.569+0.295, p=0.0441). By
contrast, patients with EM exhibited reduced activities
in the left insula (HC: 1.592+0.206; EM: 0.837 +0.203,
p=0.0098), bilateral SI (left: HC: 4.715+0.37; EM:
3.581+£0.25, p=0.0107; right: HC: 2.227+0.214; EM:
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Fig. 2 Altered brainstem and cortical activation in migraine patients. Time-varying normalised activation amplitude in the responses to stimulation
in the brainstem and bilateral anterior cingulate cortex (ACC), insula, primary somatosensory cortex (SI), primary motor cortex (MI), and primary
visual cortex (V1) in the healthy controls (HCs), patients with episodic migraine (EM), and patients with chronic migraine (CM). *, p<0.05; **, p<0.01
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1.603+0.19, p=0.0297), and left MI (HC: 4.725+0.408;
EM: 3.345+0.274, p=0.0048). Furthermore, at 25-30
ms, patients with EM exhibited significantly decreased
amplitudes for the responses in the right insula (HC:
1.797+0.278; EM: 0.94+0.205, p=0.013), left SI (HC:
3.055+0.436; EM: 1.843+0.302, p=0.0215), and left MI
(HC: 3.271+0.459; EM: 1.856+0.306, p=0.0099). Nota-
bly, the evoked activities in both the brainstem and cor-
tical regions were comparable between the CM and EM
groups.

Spectral causality relationships from brainstem

to cortical regions

Spectral Granger causality analysis was used to compare
the degree of neural oscillatory connectivity from the
brainstem to cortical regions between the groups. Fig-
ure 3 indicates the significant differences in connections
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and frequencies, with the colour coding representing the
¢ values of the significant differences, with a threshold set
for significance. Notably, compared with HCs, patients
with CM exhibited prominent increases in connectiv-
ity. These alterations in connectivity in patients with CM
were characterised by (1) enhanced connectivity from the
brainstem to the left insula, right V1, left SI, bilateral MI,
and right ACC in the high-gamma (60-200 Hz) range;
(2) increased connectivity from the brainstem to the left
SI and left MI in the gamma (25-60 Hz) range; and (3)
increased connectivity from the brainstem to the right
ACC in the alpha (8—13 Hz) band.

EM patients also exhibited notable changes. That
is, they exhibited increased connectivity between the
brainstem and the right V1, bilateral MI, and right ACC
in the high-gamma range as well as increased connec-
tivity between the brainstem and the right insula and
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Fig. 3 Aberrant effective connectivity from the brainstem to cortex regions in patients with migraine. The spectral Granger causality analysis
between groups was visualised in a t-value matrix, where the x-axis represents frequency, and the y-axis corresponds to distinct brainstem-cortex
connections. The plots display significant differences between groups that exceed the statistical threshold, with colour coding representing

the corresponding t values. HCs, healthy controls; EM, episodic migraine; CM, chronic migraine; Ins, insula; V1, primary visual cortex; S, primary
somatosensory cortex; MI, primary motor cortex; ACC, anterior cingulate cortex. L, left; R, right
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between the brainstem and the left MI in the gamma
band. Interestingly, the pattern of oscillatory effective
connectivity differed between CM and patients with EM.
Specifically, patients with CM exhibited increased con-
nectivity between the brainstem and left insula, right SI,
bilateral MI, and right ACC as well as between the brain-
stem and the left insula and left SI in the gamma band.
Additionally, patients with CM exhibited increased con-
nectivity from the brainstem to the left V1 in the beta
band, and they also demonstrated decreased connectiv-
ity between the brainstem and right MI in the 80-100-Hz
frequency range.

Construction and evaluation of classification models using
machine learning

In this study, data from 102 HCs, 96 patients with CM,
and 111 patients with EM were included in the training
dataset, and the independent testing dataset included
the data of 11 HCs, 10 patients with CM, and 12 patients
with EM. Classification models were developed and
applied for conducting three comparisons: HC vs. CM,
HC vs. EM, and CM vs. EM. These models were recon-
structed using three sets of key features: amplitude
responses; amplitude and connectivity measurements;
and a combination of amplitude, connectivity, and psy-
chometric assessments scores. Notably, these features
used in the model significantly differed across the groups,
as indicated in the preceding analyses.

In distinguishing patients with CM from HCs (Fig. 4),
classification models achieved an accuracy of 57.1%, an
AUC of 0.597, a sensitivity of 0.53, and a specificity of
0.61 when they were based on a Gaussian SVM (kernel
scale: 2) and included only amplitude response features.
With the addition of connectivity measurements, the
performance improved to an accuracy of 71.2%, an AUC
of 0.717, a sensitivity of 0.61, and a specificity of 0.80
for the model based on a Gaussian SVM (kernel scale:
201). In the models including the combination of ampli-
tude, connectivity, and psychometric assessment scores
and using a Linear SVM (kernel scale: 1), an accuracy of
81.8%, an AUC of 0.863, a sensitivity of 0.77, and a speci-
ficity of 0.86 were obtained.

In distinguishing patients with EM from HCs (Fig. 5),
classification models that were based on a Gaussian
SVM (kernel scale: 2.2) and utilised the amplitudes of the
responses alone and achieved an accuracy of 61.0%, an
AUC of 0.61, a sensitivity of 0.63, and a specificity of 0.59.
With the inclusion of connectivity measurements and by
applying a Gaussian SVM (kernel scale: 8.4) in the mod-
els, the accuracy of the model improved to 72.3%, with
an AUC of 0.742, a sensitivity of 0.63, and a specificity
of 0.82. Furthermore, in the models that were based on
a Gaussian SVM (kernel scale: 8.6) and incorporated the
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psychometric assessment scores with the amplitudes of
the responses and connectivity and, an accuracy of 77.5%,
an AUC of 0.836, a sensitivity of 0.73, and a specificity of
0.82 were obtained.

Finally, in differentiating patients with CM from other
patients with migraine (Fig. 6), the model that was based
on a Gaussian SVM (kernel scale: 40.2) and included con-
nectivity measurements alone achieved an accuracy of
71.5%, an AUC of 0.714, a sensitivity of 0.59, and a speci-
ficity of 0.82. With the incorporation of the PSQI score
with connectivity measurements, the model based on a
Gaussian SVM (kernel scale: 2.7) maintained good per-
formance with an accuracy of 70.5%, an AUC of 0.735, a
sensitivity of 0.66, and a specificity of 0.75. Notably, the
features used in each classification model were detailed
in supplementary Table 1. Moreover, the importance
scores for individual feature in each classification model,
calculated using the ANOVA algorithm, are illustrated
in Fig. 7 (a). The top 20 most important features are
listed. In the classification model, Shapley summary plots
(swarm charts) show the ten predictors with the highest
mean absolute Shapley values in each model (Fig. 7(b)).
In summary, psychometric scores, amplitude and effec-
tive connectivity values contributed significantly to the
fine performance of the prediction models.

To assess the generalisability of these classification
models, we applied them to an independent testing data-
set consisting of the data of 11 HCs, 10 patients with
CM, and 12 patients with EM (Fig. 8). In distinguish-
ing patients with CM from HCs, the model—based on
evoked amplitude, effective connectivity, and psycho-
metric assessment scores—performed well, achieving
an accuracy of 76.2%, an AUC of 0.89, a sensitivity of
0.6, and a specificity of 0.91. In distinguishing patients
with EM from HCs, the trained model, which also used
evoked amplitude, effective connectivity, and psycho-
metric assessment scores, performed well, with an accu-
racy of 87%, an AUC of 0.886, a sensitivity of 0.83, and
a specificity of 0.91. In distinguishing patients with CM
from patients with EM, the model—based on effective
connectivity and psychometric assessment scores—per-
formed well, with an accuracy of 72.7%, an AUC of 0.745,
a sensitivity of 0.6, and a specificity of 0.83. Overall, these
classification models performed well (all accuracy val-
ues>72%, AUC values>0.74) in accurately identifying
patients with migraine.

Differences of activation and interaction of brainstem

and cortex between groups

In the ANOVA analysis, significant differences in brain-
stem activation amplitude were observed at 11-15 ms
(F=3.69, p=0.026) across the groups. Post hoc analysis
indicated that amplitude values were lower in the CM
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group (p=0.038) and the EM group (p=0.063) com-
pared to the HC group. In terms of cortical activation,
evoked amplitude strength at 16—21 ms differed between
groups in the left insula (F=6.17, p=0.0023), left SI
(F=2.95, p=0.05), and left MI (F=4.08, p=0.018). Post
hoc analysis further revealed significant differences, with
decreased amplitude responses in the left insula (CM vs.
HC, p=0.0019; EM vs. HC, p=0.039), left SI (EM vs. HC,
p=0.042), and left MI (EM vs. HC, p=0.017). Moreover,
significant differences in Granger causality values were
observed between the groups (see matrix of F values in
Supplementary Fig. 1). In summary, migraine patients
exhibited altered effective connectivity, particularly in

the pathways from the brainstem to the right insula, right
V1, left SI, bilateral MI, and right ACC within the high-
gamma frequency range, as well as from brainstem to the
left SI within the gamma frequency range.

Discussion

This study demonstrated that the altered sensory pro-
cessing in patients with migraine is characterised by
decreased amplitudes of the responses in the brainstem
and cortical regions as well as increased effective connec-
tivity between them in the gamma and high-gamma fre-
quency bands. The key discriminative features of sensory
processing were primarily derived from the amplitudes of
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brainstem activity at 11-15 ms and 16-21 ms as well as
the bilateral SI and MI and the left insula and V1 at 16-21
ms. Additionally, the effective interactions of the brain-
stem with specific cortical regions at 10-30 ms in distinct
frequency bands played a significant role in altered sen-
sory processing. Notably, increased effective connectivity
was more associated with the chronification of migraine.
By integrating these features with the scores of prominent
psychometric assessments into SVM models, we identi-
fied multimodal data with discriminative features for
distinguishing CM or EM patients from HCs. The classi-
fication model performed well in differentiating patients
with CM (training: accuracy=81.8%, AUC=0.86;

independent testing: accuracy=76.2%, AUC=0.89) and
patients with EM (training: accuracy=77.5%, AUC=0.84;
independent testing: accuracy=87%, AUC=0.88) from
HCs. Furthermore, the model effectively distinguished
patients with CM from patients with EM (training: accu-
racy=70.5%, AUC=0.73; independent testing: accu-
racy=72.7%, AUC=0.74). Notably, even when only the
characteristic features of SSEP responses and connectiv-
ity were included, the classification models performed
well (with all accuracies>71.2% and AUCs>0.717) in
identifying CM or EM. In summary, the neural signatures
of early somatosensory processing may provide sufficient
information for identifying CM or patients with EM.
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Abnormalities of evoked responses in patients

with migraine

In this study, patients with EM and CM exhibited equally
altered evoked activities during early sensory processing
in the brainstem, extending later on from the subcortical
regions to cortical areas, particularly in the insula, SI, V1,
and MI These findings indicate the presence of sensory
processing abnormalities in patients with migraine. These
findings are consistent with those of previous neuroim-
aging studies, and they support the prevailing idea that
patients affected by migraine have a different way to elab-
orate somatosensory inputs and to integrate them with
other sensory modalities [4, 5, 10]. Prior studies identified
abnormalities in cross-modal visual and sensorimotor

integration in EM and CM [27, 28]. As for decreased
brainstem activation during sensory processing, a posi-
tron emission tomography study reported reduced
activity in the frontal and temporoparietal regions in
conjunction with brainstem in response to olfactory
stimulation during the pain-free interval compared with
controls [29]. Similarly, an fMRI study found reduced
brainstem activation, particularly during the interictal
phase [30]. These results align with previous EEG find-
ings, where patients with migraine exhibited significantly
lower brainstem activation in response to median nerve
stimulation, particularly in high-frequency oscillations
[31]. Significant changes were also found in the insula,
which plays a crucial role in autonomic regulation and
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somatosensation (both of which are altered in patents
with migraine) [32]. Patients with migraine exhibited a
reduction in the cortical surface area in the left insula,
with the most pronounced decrease observed in patients
with CM [33]. Additionally, an fMRI study revealed the
decreased dynamic amplitude of low-frequency fluctua-
tions in the bilateral anterior insula among patients with
migraine without aura [34]. These structural and func-
tional changes in the insula suggest dysfunctional sensory
processing in patients with migraine. In SI, reduced early
neuronal activation was corroborated by the decreased
amplitude of the high-frequency oscillation, reflecting
more closely the subcortico-cortical network activity
[35], and a reduced somatosensory evoked neuromag-
netic field [14, 15] in patients with episodic migraine.
Furthermore, there is much evidence in favour of hypo-
functioning brainstem structures subserving conditioned
pain modulation (CPM) of cortical activation in EM and
CM. Reduced thermal pain-induced activation in this
brainstem pain modulatory system and interconnected
cortical areas like SI, V1, MI, and superior temporal
gyrus was previously detected using fMRI and evoked
EEG in patients with migraine [36—39]. These findings
suggest a reduced preactivation excitability level for sen-
sory cortices [40], which might be potentially linked to

the thalamocortical dysrhythmia caused by brainstem
dysfunction [6, 35].

Aberrant causal relationship of somatosensory processing
in patients with migraine

Through spectral Granger causality analysis, we observed
enhanced oscillatory effective connectivity from the
brainstem to cortical regions in patients with migraine,
particularly in the gamma and high-gamma frequencies.
Notably, the experimental design of this study, which was
specifically tailored for examining brainstem and cortical
responses to sensory stimulation, enabled the first non-
invasive electrophysiological recording for determining
the causal relationships of brainstem—cortex interactions.
An fMRI study revealed increased brainstem connectiv-
ity to the anterior insula and anterior midcingulate cortex
during respiratory-gated auricular vagal afferent nerve
stimulation in patients with migraine [41]. This observa-
tion suggests the involvement of the major serotonergic
and noradrenergic nuclei and pathways located in the
brainstem in pain modulation. In patients with EM, Liu
et al. reported increased effective connectivity from the
brainstem to the left ACC and right SI as well as from the
brainstem to the left MI [42]. An abnormal deficiency
in brainstem activity resulted in negative effects on
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the plasticity of the visual cortex, as shown in migraine
patients recording visual evoked responses during CPM
[39]. These findings highlight the potential role of abnor-
mal brainstem—to—cortical connectivity in the neuropa-
thology of migraine. Additionally, a significant increase
in connectivity between the brainstem and left SI was
observed during migraine attacks [43]. Leveraging the
fine temporal resolution of EEG recordings, this study
analysed EEG signals during the latency period of 10-30
ms, which likely represents the sequential activation of
subcortical and cortical neurons through thalamo-cor-
tical and cortico-cortical connections [44]. Regarding
the characteristic frequency of connectivity, increased
responses in the sensory cortex in the gamma band are
linked to abnormalities in sensory processing in patients

with migraine [45]. Notably, thalamocortical connections
in pain disorders are believed to be abnormally engaged
in the gamma band, inducing an ‘edge effect’ that is likely
due to lateral disinhibition resulting from the asymmetri-
cal inhibitory activity of interneurons at the cortical level
[46]. Collectively, these findings support the neuropatho-
logical role of thalamocortical dysrhythmia in migraine;
this dysrhythmia may be induced by decreased regulation
from monoaminergic nuclei in the brainstem of cortical
areas at low frequency oscillatory activity bands [6, 35].
These dysfunctional subcortical-to-cortical activation can
induce the emergence of abnormal high level of gamma
band oscillatory activity in the thalamo-cortical loop gen-
erating high-frequency, phase locked coherent increased
activation of cortical areas [47]. All this complex pattern
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of dysrhythmic thalamo-cortico-thalamic activation can
easily explain the results of the present study, namely a
co-occurrence of reduced low-frequency evoked activ-
ity and increased effective brainstem connectivity with
different cortical areas devoted to high-frequency mul-
tisensory processing. Furthermore, we discovered that
this atypical effective connection pattern between the
brainstem and cortical regions is more evident in patients
with CM. These findings were corroborated by resting-
state fMRI studies, which revealed a significant recon-
figuration of large-scale functional cortical networks in
CM patients, likely due to a central sensitization-induced
reorganization process [48]. This process of sensitisation
boosts the level of effective connectivity with the cortical
mantle (insula, SI and V1) not only in relation to healthy
subjects, but also to episodic migraineurs. This was
not the case for the right motor cortex, which showed
reduced connectivity in CM patients compared to EM
patients. This finding can be interpreted by acknowledg-
ing the significant antinociceptive role of the motor cor-
tex, which is impaired due to the chronic manifestation
of migraine, similar to other forms of chronic pain [49].

Performance of classification models including multimodal
data

In this study, with the combination of the characteris-
tic features of SSEP amplitude and connectivity during
sensory processing along with the scores of psycho-
metric assessments, classification models performed
well in distinguishing CM and patients with EM from
HCs (all accuracy values>76%, all AUC values>0.84)
and in identifying migraine subtypes (all accuracy val-
ues >70%, all AUC values>0.73). Our previous studies
have revealed that somatosensory-related oscillations
reflect altered central processing involving excitabil-
ity and habituation [14, 15, 25]. The classification
model including these characteristic sensory features
performed well in identifying patients with CM [25].
Furthermore, Zhu and colleagues [50] effectively distin-
guished HCs from patients with migraine during inter-
ictal or ictal periods by utilising classification models
including latency, amplitude, and high-frequency power
of somatosensory-evoked potentials. Notably, even
when only the characteristic features of SSEP ampli-
tude and connectivity were included, the classification
models still performed well (with all accuracies>71.2%
and AUCs>0.717) in identifying CM or patients with
EM. Given that migraine is linked to altered central
sensory processing, involving neuronal excitability,
inhibition, or synchronisation [5, 6, 8, 10, 51], these
dysfunctional central responses to sensory stimulation
may serve as crucial biomarkers for migraine diagnosis.
Notably, incorporating the scores of key psychometric
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assessments into the classification models significantly
enhanced their accuracy and AUC, particularly in iden-
tifying patients with CM. This finding aligns with the
prevailing understanding that migraine is a complex
disorder with sensory, affective, and cognitive compo-
nents [4—6, 8, 10, 51]. Moreover, these results are con-
sistent with the excellent performance obtained in ML
studies that leverage neuroimaging resting-state data for
identifying patients with CM, which involves multiple
brain networks including sensory, affective, and cogni-
tive domains [9, 24]. Collectively, these results indicate
that altered brainstem—cortex activities in combination
with the scores of key psychometric assessments can
be effectively used to develop clinical decision-support
tools based on ML algorithms.

Notably, in clinical practice, accurately assessing the
migraine phase in patients diagnosed with migraine is chal-
lenging. Moreover, dynamic changes in neural excitability
were noted across migraine phases [11]. For addressing
this challenge, in this study, we identified common altera-
tions in sensory processing, regardless of the migraine
phase, and used these features to develop diagnostic clas-
sification models. By contrast, in previous studies, mag-
netoencephalography (MEG) resting-state connectivity in
the interictal period within or among networks had >90%
of accuracy in identifying CM [9]. Similarly, a functional
MRI study demonstrated excellent performance, with an
accuracy of >84% in distinguishing patients with migraine
from HCs during headache-free periods [52]. Although
our approach may lead to slightly reduced model perfor-
mance, it enhances the practical applicability and utility of
the models in routine clinical settings.

Numerous EEG and MEG studies have investigated
resting-state activities, focusing on oscillatory power and
connectivity parameters, to explore the underlying neu-
ropathological mechanisms of migraine and to develop
models for migraine identification [9, 24]. Although these
studies have reported strong performance by their mod-
els, their findings on resting-state alterations in migraine
remain inconclusive. By contrast, altered sensory process-
ing has been consistently established as a crucial hallmark
of migraine neuropathology [6, 8, 11, 14, 15, 40, 51], sug-
gesting that sensory responses are key features for develop-
ing classification models for migraine identification. Given
the complexity of sensory, affective, and cognitive disor-
ders in migraine [4-6, 8, 10, 51], integrating multimodal
data—sensory responses, psychometric scores, and rest-
ing-state activities—represents a promising next step for
developing highly effective diagnostic tools for migraine.

Limitations
Our study has several limitations. First, further research
is needed to determine whether the classification models



Hsiao et al. The Journal of Headache and Pain (2024) 25:185

developed in this study can effectively differentiate other
pain disorders, such as tension-type headache, fibromyal-
gia, or lower back pain, from migraine. Although distinct
alterations in sensory processing have been observed in
various pain disorders [14], the present findings do not
establish that the aberrant brainstem—cortex activation and
interactions are specific to patients with migraine. Second,
due to the limited spatial resolution of the EEG approach,
the activation of specific brainstem subregions, which play
distinct roles in the neuropathology of migraine, could not
be detected. Third, the selected latency period (11-30 ms)
and the direction of effective connectivity (from the brain-
stem to cortex) in this analysis limit the exploration of
sensory processing. Further investigation is warranted to
assess the effects of higher-order functional integration and
downstream sensory modulation in patients with migraine.
Fourth, the differences in gender ratios across groups may
have influenced the performance of the classification mod-
els and require further exploration. Finally, since dynamic
changes in neural excitability have been observed across
different migraine phases [6, 8, 11, 51], caution is warranted
when interpreting electrophysiological findings in this study
that were examined without accounting for migraine phase.

Conclusion

Decreased activation in brainstem and cortical regions
and increased brainstem-to-cortex effective connectiv-
ity are characteristic of the abnormal sensory processing
in migraine. This enhanced connectivity in the gamma is
indicative of the progression toward migraine chronifica-
tion. In this study, multimodal data incorporating EEG
features and psychometric assessment scores were used
to develop reliable and generalisable models for identify-
ing patients with migraine and for differentiating between
CM and patients with EM. With its advantages in terms of
affordability, wide availability, and potential for mobile use,
evoked EEG recording combined with ML algorithms can
serve as a rapid clinical decision-support tool for diagnos-
ing headache disorders.
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Supplementary Material 1.

Supplementary Material 2. Fig. 1 Difference of effective connectivity from
the brainstem to cortex regions between groups. The analysis of variance
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