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Abstract 

Background To gain a comprehensive understanding of the altered sensory processing in patients with migraine, 
in this study, we developed an electroencephalography (EEG) protocol for examining brainstem and cortical 
responses to sensory stimulation. Furthermore, machine learning techniques were employed to identify neural sig-
natures from evoked brainstem–cortex activation and their interactions, facilitating the identification of the presence 
and subtype of migraine.

Methods This study analysed 1,000-epoch-averaged somatosensory evoked responses from 342 participants, com-
prising 113 healthy controls (HCs), 106 patients with chronic migraine (CM), and 123 patients with episodic migraine 
(EM). Activation amplitude and effective connectivity were obtained using weighted minimum norm estimates 
with spectral Granger causality analysis. This study used support vector machine algorithms to develop classification 
models; multimodal data (amplitude, connectivity, and scores of psychometric assessments) were applied to assess 
the reliability and generalisability of the identification results from the classification models.

Results The findings revealed that patients with migraine exhibited reduced amplitudes for responses in both the 
brainstem and cortical regions and increased effective connectivity between these regions in the gamma and high-
gamma frequency bands. The classification model with characteristic features performed well in distinguishing 
patients with CM from HCs, achieving an accuracy of 81.8% and an area under the curve (AUC) of 0.86 during training 
and an accuracy of 76.2% and an AUC of 0.89 during independent testing. Similarly, the model effectively identified 
patients with EM, with an accuracy of 77.5% and an AUC of 0.84 during training and an accuracy of 87% and an AUC 
of 0.88 during independent testing. Additionally, the model successfully differentiated patients with CM from patients 
with EM, with an accuracy of 70.5% and an AUC of 0.73 during training and an accuracy of 72.7% and an AUC of 0.74 
during independent testing.

Conclusion Altered brainstem-cortex activation and interaction are characteristic of the abnormal sensory process-
ing in migraine. Combining evoked activity analysis with machine learning offers a reliable and generalisable tool 
for identifying patients with migraine and for assessing the severity of their condition. Thus, this approach is an effec-
tive and rapid diagnostic tool for clinicians.
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Introduction
Migraine is a highly prevalent neurological disorder 
affecting more than one billion people worldwide. The 
World Health Organization’s Global Burden of Disease 
study reported a global age-standardised prevalence of 
14.4% [1]. Patients with migraine experience consider-
able functional disability, particularly as the disorder 
progresses from episodic migraine (EM) to chronic 
migraine (CM); CM is defined by headaches occur-
ring ≥ 15 days per month for > 3 months [2]. This pro-
gression also leads to a considerable economic burden 
[3]. Migraine is recognised as a complex brain network 
disorder with a strong genetic basis, in which interac-
tions among various neuronal systems contribute to a 
wide range of symptoms. Central dysfunctions play a 
critical role in the neuropathology of migraine [4, 5], 
particularly regarding the potential generators or medi-
ators of migraine attacks in the subcortical regions of 
the brain.

In patients with migraine, alterations in sensory pro-
cessing often involve changes in the transmission and 
processing of sensory information from the peripheral 
nervous system to the brain [6]. Consequently, patients 
with migraine frequently exhibit increased sensitivity 
to sensory stimuli, such as touch, light, temperature, 
and pain, leading to an exaggerated perception of pain 
or abnormal pain responses, even to nonpainful stim-
uli. Neurophysiological and neuroimaging evidence 
suggests that altered brainstem [7] and cortical activa-
tion [6], sensory habituation deficits [8], and abnor-
mal connectivity from subcortical areas, such as the 
brainstem, to higher cortical areas may characterise the 
impaired sensory integration and modulation observed 
in patients with migraine. However, it remains to be 
determined whether this atypical sensory process-
ing exhibits consistent characteristics across different 
migraine phases, potentially serving as a distinct neural 
signature for identifying patients with migraine.

Supervised machine learning (ML) approaches can be 
used to diagnose migraine on the basis of its character-
istic changes in sensory processing [9]. Supervised ML 
can also provide tailored recommendations, making it 
suitable for routine use in clinical settings. Given its 
affordability, wide availability, and potential for mobil-
ity and scalability to large patient populations, electro-
encephalography (EEG) combined with ML algorithms 
may be particularly effective for establishing a migraine 
classification model [10].

This study employed EEG to directly capture neural 
activity, with an experimental design specifically devel-
oped for examining brainstem and cortical responses to 
sensory stimulation [11]. We examined the changes in 
the amplitude of the evoked responses in brainstem and 
cortical regions as well as the oscillatory effective con-
nectivity between the brainstem and cortical regions 
in patients with migraine, irrespective of the migraine 
phase. To mitigate the effects of volume conduction 
in EEG recordings, we conducted source-based analy-
ses through distributed source modelling, specifically 
employing weighted minimum norm estimates (MNEs). 
Classification models were used to identify the electro-
physiological and psychometric features associated with 
the frequency of headache. These models differentiated 
patients with CM and patients with EM from healthy 
controls (HCs) and distinguished patients with CM from 
patients with EM. To ensure generalisability, the mod-
els were validated using an independent testing dataset. 
Additionally, this study aimed to reveal the signatures of 
altered brainstem–cortex activation and interaction that 
contribute to the neuropathology of migraine chronifi-
cation, providing an effective and rapid diagnostic aid in 
clinical scenarios where migraine severity is challenging 
to accurately assess.

Materials and methods
1. Participants
All participants were aged between 20 and 60 years, were 
right-handed, had no history of systemic or major neuro-
logical disorders, and had normal results on physical and 
neurological examinations. They were recruited from the 
headache clinic at Taipei Veterans General Hospital. EM 
and CM were diagnosed according to International Clas-
sification of Headache Disorders, Third Edition [2]. All 
patients were naïve to preventive migraine treatments. 
The exclusion criteria were the overuse of headache med-
ications, as defined by the diagnostic criteria of medica-
tion-overuse headache [2], as well as the regular (daily) 
use of migraine prophylactic drugs, hormones, or other 
medications. None of the HCs had a personal or family 
history of primary headaches, nor had they experienced 
any significant pain conditions in the previous year. The 
study protocol was approved by the Institutional Review 
Board of Taipei Veterans General Hospital (VGHTPE: 
IRB 2019–07-001B), and all participants provided written 
informed consent prior to the study.
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2. Study design
All participants completed semi-structured question-
naires on their background characteristics. Moreover, 
they received psychometric assessments, including the 
Hospital Anxiety and Depression Scale (HADS) [12], 
Perceived Stress Scale (PSS), and Pittsburgh Sleep Qual-
ity Index (PSQI). For patients with migraine, additional 
information in terms of headache profiles, such as the 
number of headache days per month (headache days), 
disease duration (in years) since the onset of first head-
ache (disease duration), average headache intensity over 
the past year (severity of last year), and number of acute 
headache medications per month, was obtained. Fur-
thermore, the Migraine Disability Assessment (MIDAS) 
questionnaire was administered to evaluate migraine-
related disability [13]. Following recruitment, all patients 
maintained a headache diary, in which they recorded the 
details of their headaches, including the date and time of 
attacks, pain intensity, associated symptoms, medication 
use (if any), and menstrual periods. For each participant, 
EEG recordings were conducted on the same day they 

completed the questionnaires and provided demographic 
information. Notably, dynamic changes in brain activa-
tion were observed across different migraine phases, 
particularly during the preictal period [11]. Given the 
difficulties in accurately assessing the migraine phase for 
each patient in clinical scenarios, patients in the present 
study were recruited regardless of their current migraine 
phase to facilitate a more rapid diagnostic approach.

3. EEG recording and analysis
Figure 1 outlines the data acquisition and analysis pipe-
line. Scalp EEG data were recorded using a 64-electrode 
BrainVision actiCAP system (Brain Products GmbH, 
Munich, Germany), which adheres to the extended 
International 10–20 system. In this system, for imped-
ance conversion, active circuits are integrated into the 
streamlined actiCAP electrodes, providing superior sig-
nal quality even at higher impedance, compared with 
conventional passive electrodes. Crucially, an electronic 
circuit is integrated into each active electrode for per-
forming impedance conversion directly at the scalp, 

Fig. 1 Procedure of EEG experiment and data analysis. Pipeline of the somatosensory evoked potential data acquisition, data preprocessing 
and analysis, and the development and validation of machine learning analysis. SSEP, somatosensory evoked potential; Stim., stimulus; ECG, 
electrocardiography; EOG, electrooculography; BEM, boundary element modelling; wMNE, weighted minimum norm estimates; ROIs, regions 
of interest; CM, chronic migraine; HCs, healthy controls; EM, episodic migraine
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offering the acquisition of high-quality EEG signals that 
remain unaffected by extraneous noise or movements 
possibly affecting the electrode cables. The electrodes 
were referenced online to an electrode positioned at the 
Fz plane, with a common ground connection established 
at the FPz site. EEG signals were amplified and digitised 
at a sampling rate of 1,000 Hz by using a BrainAmp DC 
amplifier (Brain Products GmbH) that was interfaced 
with Brain Vision Recorder software (version 2.1, Brain 
Products GmbH). For the offline elimination of arte-
facts, electrooculography (EOG) and electrocardiography 
(ECG) recordings were simultaneously obtained.

For each participant, somatosensory-evoked poten-
tials (SSEPs) were elicited through an electrical stimu-
lation task. Participants received stimulation using a 
Digitimer DS7A device (Digitimer, Welwyn Garden City, 
Hertfordshire, UK), which delivered constant-current 
square-wave pulses (0.2-ms duration, proximal cath-
ode) at a frequency of 4  Hz. The stimulation intensity 
was set to twice the subjective sensory threshold of the 
right median nerve at the wrist. Consistent with previ-
ous findings, no pain response or visible twitching of 
the flexor digitorum superficialis was observed [14, 15]. 
Participants were comfortably seated in an illuminated 
room and were instructed to remain awake with their 
eyes closed during the stimulation. A total of 1,000 SSEP 
epochs were recorded, and each trial comprised a 50-ms 
prestimulus baseline period and a 100-ms poststimulus 
period. According to a previous study [16], this num-
ber of epochs is sufficient to reliably capture subcortical 
responses, particularly those from the brainstem.

To isolate source-based neural activity and to mitigate 
the effects of volume conduction in EEG recordings, dis-
tributed current source modelling was performed using 
depth-weighted MNEs [14, 15, 17]. This method enables 
the precise localisation of the source, even for deep neu-
ral generators [18, 19]. The neuronal dynamics of both 
cortical and subcortical sources were modelled using 
a mixed brain model incorporating both volume and 
surface scouts; the model can identify the characteris-
tic signal patterns produced by a unit dipole. This for-
ward model enabled the realistic distribution of current 
dipoles across the neocortex and subcortical structures 
[19]; this model is based on the symmetric boundary ele-
ment method (BEM) [20]. The model yields more accu-
rate results than spherical models. This study also used 
the inverse operator from the MNE analysis to estimate 
the distribution of the current sources of EEG signals. 
This approach generated distributed and dynamic brain 
activation maps that were reconstructed onto the surface 
and volume models for each participant. Subsequently, 
neural amplitude dynamics in the cortical and subcorti-
cal regions were extracted for further analysis. This study 

analysed time-varying current intensity in regions of 
interest (ROIs), including the brainstem (volume scout), 
bilateral insula, anterior cingulate cortex (ACC), pri-
mary motor cortex (MI), primary somatosensory cortex 
(SI), and primary visual cortex (V1) (surface scout). All 
current density values were transformed into z-scores, 
reflecting deviations from baseline.

Spectral Granger causality analysis, which is an exten-
sion of Granger causality in the frequency domain, was 
utilised in this study to determine whether one time 
series can predict another at specific frequencies; thus, 
this analysis can provide insights into the directional 
influence between time series across different frequency 
bands [21, 22]. This method yields valuable insights on 
the mechanism through which directional interactions 
occur between different brain regions at various frequen-
cies. In this study, source-based Granger causality analy-
sis in the frequency domain was conducted using the 
MNE-derived intensity activities of the current sources 
in each ROI. The analysis was performed across frequen-
cies ranging from 1 to 200 Hz, with a resolution of 1 Hz, 
and a Granger model order of ≤ 10 was employed. Cru-
cially, to explore ascending somatosensory processes, we 
examined the causal relationships from the brainstem 
to cortical regions—including the bilateral insula, ACC, 
MI, SI, and V1—within the 10–30-ms time window after 
stimulation.

All data analyses in this study, including preprocessing, 
source modelling, amplitude measurement, and spectral 
Granger causality analysis, were conducted using Brain-
storm software [23], as partially described in our previ-
ous studies [9, 11, 14, 15, 24, 25].

4. Machine learning and statistical analysis
Given that activation measurements and effective con-
nectivity analysis primarily focus on early sensory 
processing, this study aimed to enhance migraine iden-
tification through multimodal data modelling. The mul-
timodal data included clinical scores related to emotion 
and cognition, such as HADS, PSS, and PQSI scores.

Before model construction, feature selection is 
essential for improving classification performance, 
reducing computational complexity, and eliminating 
irrelevant features. Therefore, in this study, univariate 
analyses (independent t tests) were applied to identify 
discriminative features between the groups. These fea-
tures were then used to construct training and test-
ing datasets (Fig.  1). Notably, the training datasets 
were derived from the multimodal data of 90% of the 
participants, and the remaining 10% of the data were 
applied as the independent testing datasets. This study 
employed support vector machine (SVM) algorithms 
to develop classification models for distinguishing 
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HC vs. CM, HC vs. EM, and CM vs. EM. SVM algo-
rithms map input vectors into a high-dimensional 
space for constructing a linear classification system. 
By training the algorithm on the provided data, SVM 
identified an optimal hyperplane that minimised clas-
sification errors and produced an effective model. The 
supervised learning approach used to train the SVM 
classifiers enabled the pairwise for examination of 
the conditions, with appropriate kernel functions and 
parameters. The selection of hyperparameter values 
was automated through Bayesian optimisation.

To avoid overfitting, the classification models in 
this study were trained using a 5-fold leave-one-out 
cross-validation technique. Classification models were 
developed and reconstructed using datasets contain-
ing three sets of features: (1) prominent amplitude 
measurements from the brainstem and 10 cortical 
regions, (2) significant spectral Granger causality val-
ues combined with amplitude measurements, and (3) 
discriminative amplitude and spectral Granger causal-
ity values integrated with psychometric scores (HADS, 
PSS, or PSQI). All ML analyses were conducted using 
the Machine Learning Toolbox in MATLAB software 
(R2023b).

The performance of each classification model was 
assessed in terms of accuracy, sensitivity, specific-
ity, and the area under the curve (AUC). After model 
reconstruction and evaluation on the training data-
set, the models were further validated with the testing 
datasets to assess the generalisability of the identified 
features (Fig.  1). The labels for the testing datasets 
were blinded, and classification models were applied 
to the discriminative features without further train-
ing. Predictive accuracy and AUC were then calculated 
for each model. Shapley values were computed for 
each classification model to quantify the contribution 
of individual features to specific predictions [26]. The 
Shapley values from models with satisfactory perfor-
mance were analysed to assess the importance of each 
feature.

Furthermore, to examine the differences in activa-
tion and interaction between the brainstem and cor-
tex across groups (HC, CM, and EM), we conducted 
a series of analyses. Activation amplitudes at spe-
cific time intervals in the brainstem were compared 
between groups using analysis of variance (ANOVA), 
as well as cortical activation within the selected ROIs 
and time intervals. Additionally, Granger causality 
values across distinct frequency bands were tested via 
ANOVA. Bonferroni correction was applied for multi-
ple comparisons, and a corrected p-value of < 0.05 was 
considered statistically significant.

Results
Demographic characteristics and clinical scores 
of participants
This study included 342 participants—113 HCs, 106 
patients with CM, and 123 patients with EM. The demo-
graphic and clinical characteristics of all participants 
are summarised in Table 1. Three groups (HC, CM, and 
EM) did not differ significantly in terms of age. However, 
the HC group had a higher proportion of male partici-
pants compared to the other two groups. In the psycho-
metric assessments, anxiety (HADS_A) and depression 
(HADS_D) scores were higher in the CM and EM groups 
than in the HC group (HC vs. CM: p < 0.0001 in the A 
score, p < 0.0001 in the D score; HC vs. EM: p < 0.0001 in 
the A score, p < 0.0001 in the D score). Moreover, PSS and 
PSQI scores were lower in the HC group than in the CM 
and EM groups (PSS: p < 0.0001 for HC vs. CM, p = 0.001 
for HC vs. EM; PSQI: p < 0.0001 for HC vs. CM, p < 0.0001 
for HC vs. EM). Notably, PSQI scores were higher in the 
CM group than in the EM group (p = 0.0003). Regarding 
the migraine profile, as expected, patients with CM had 
more monthly headache days (p < 0.0001) and a higher 

Table 1 Demographics and clinical profiles of participants 
(mean ± std.)

HC: Healthy control; CM: Chronic migraine; EM: Episodic migraine; F: female; M: 
male;

HADS: Hospital anxiety and depression score; A: Anxiety; D: Depression; PSS: 
Perceived stress scale;

PSQI: Pittsburgh sleep quality index; MIDAS: Migraine disability assessment 
scores
* , significant difference between HC and CM; &, significant difference between 
HC and EM;
% , significant difference between CM and EM

HC CM EM p-value

N 113 106 123

Age (years) 34.1 ± 8.6 36.0 ± 9.8 34.2 ± 8.8 p = 0.20

Sex 67 F/46 M 83 F/23 M 93 F/30 M p = 0.01

Psychometrics
HADS_A 4.3 ± 3.3 7.9 ± 3.4 7.1 ± 3.8 p < 0.001*,&

HADS_D 2.9 ± 2.7 6.2 ± 3.6 5.3 ± 3.4 p < 0.001*,&

PSS 21.2 ± 8.6 26.5 ± 8.8 24.9 ± 8.4 p < 0.001*,&

PSQI 3.8 ± 2.5 8.8 ± 3.7 7.1 ± 3.4 p < 0.001*,&,%

Migraine profile
Headache days (/
month)

- 19.8 ± 5.5 6.6 ± 4.3 p < 0.001%

Disease duration 
(years)

- 17.2 ± 9.3 15.4 ± 9.1 p = 0.76

Severity of last year 
(0–10)

- 6.1 ± 1.7 6.3 ± 1.8 p = 0.27

Number of acute 
headache medica-
tions (/month)

9.6 ± 8.4 5.3 ± 4.5 p < 0.001%

MIDAS - 42.8 ± 43.0 21.4 ± 24.3 p < 0.001%
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usage of painkiller (per month; p < 0.0001) than patients 
with EM. Furthermore, MIDAS scores were higher in 
patients with CM than in patients with EM (p < 0.0001). 
However, the disease duration and severity in the preced-
ing year were comparable between the two groups.

Activation dynamics of brainstem and cortex 
in response to stimulation
After 4-Hz electrical stimulation, the time-varying 
evoked activities obtained were transformed into z-scores 
for each participant and were then averaged across sub-
jects. The data for each group are presented in Fig. 2. The 
waveform profiles were similar for the groups. However, 
significant peak amplitude changes for the responses 
indicated alterations in sensory processing in patients 
with migraine. To compare activation strength between 
the groups, the averaged amplitude values were extracted 

at specific time intervals, as follows: 11–15 ms and 16–21 
ms for the brainstem and 16–21 ms and 25–30 ms for the 
cortical regions. Compared with the HC group, the CM 
and EM groups exhibited reduced brainstem responses 
at 11–15 ms (HC: 0.784 ± 0.122; CM: 0.317 ± 0.139, 
p = 0.0122; EM: 0.371 ± 0.134, p = 0.0244). Additionally, 
patients with CM exhibited weakened brainstem activa-
tion at 16–21 ms (HC: 2.126 ± 0.232; CM: 1.471 ± 0.238, 
p = 0.05).

In the cortical regions, patients with CM exhibited 
decreased amplitudes at 16–21 ms in the left insula (HC: 
1.592 ± 0.206; CM: 0.497 ± 0.259, p = 0.0011) and left V1 
(HC: 3.464 ± 0.326; CM: 2.569 ± 0.295, p = 0.0441). By 
contrast, patients with EM exhibited reduced activities 
in the left insula (HC: 1.592 ± 0.206; EM: 0.837 ± 0.203, 
p = 0.0098), bilateral SI (left: HC: 4.715 ± 0.37; EM: 
3.581 ± 0.25, p = 0.0107; right: HC: 2.227 ± 0.214; EM: 

Fig. 2 Altered brainstem and cortical activation in migraine patients. Time-varying normalised activation amplitude in the responses to stimulation 
in the brainstem and bilateral anterior cingulate cortex (ACC), insula, primary somatosensory cortex (SI), primary motor cortex (MI), and primary 
visual cortex (V1) in the healthy controls (HCs), patients with episodic migraine (EM), and patients with chronic migraine (CM). *, p < 0.05; **, p < 0.01
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1.603 ± 0.19, p = 0.0297), and left MI (HC: 4.725 ± 0.408; 
EM: 3.345 ± 0.274, p = 0.0048). Furthermore, at 25–30 
ms, patients with EM exhibited significantly decreased 
amplitudes for the responses in the right insula (HC: 
1.797 ± 0.278; EM: 0.94 ± 0.205, p = 0.013), left SI (HC: 
3.055 ± 0.436; EM: 1.843 ± 0.302, p = 0.0215), and left MI 
(HC: 3.271 ± 0.459; EM: 1.856 ± 0.306, p = 0.0099). Nota-
bly, the evoked activities in both the brainstem and cor-
tical regions were comparable between the CM and EM 
groups.

Spectral causality relationships from brainstem 
to cortical regions
Spectral Granger causality analysis was used to compare 
the degree of neural oscillatory connectivity from the 
brainstem to cortical regions between the groups. Fig-
ure 3 indicates the significant differences in connections 

and frequencies, with the colour coding representing the 
t values of the significant differences, with a threshold set 
for significance. Notably, compared with HCs, patients 
with CM exhibited prominent increases in connectiv-
ity. These alterations in connectivity in patients with CM 
were characterised by (1) enhanced connectivity from the 
brainstem to the left insula, right V1, left SI, bilateral MI, 
and right ACC in the high-gamma (60–200  Hz) range; 
(2) increased connectivity from the brainstem to the left 
SI and left MI in the gamma (25–60 Hz) range; and (3) 
increased connectivity from the brainstem to the right 
ACC in the alpha (8–13 Hz) band.

EM patients also exhibited notable changes. That 
is, they exhibited increased connectivity between the 
brainstem and the right V1, bilateral MI, and right ACC 
in the high-gamma range as well as increased connec-
tivity between the brainstem and the right insula and 

Fig. 3 Aberrant effective connectivity from the brainstem to cortex regions in patients with migraine. The spectral Granger causality analysis 
between groups was visualised in a t-value matrix, where the x-axis represents frequency, and the y-axis corresponds to distinct brainstem–cortex 
connections. The plots display significant differences between groups that exceed the statistical threshold, with colour coding representing 
the corresponding t values. HCs, healthy controls; EM, episodic migraine; CM, chronic migraine; Ins, insula; V1, primary visual cortex; SI, primary 
somatosensory cortex; MI, primary motor cortex; ACC, anterior cingulate cortex. L, left; R, right
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between the brainstem and the left MI in the gamma 
band. Interestingly, the pattern of oscillatory effective 
connectivity differed between CM and patients with EM. 
Specifically, patients with CM exhibited increased con-
nectivity between the brainstem and left insula, right SI, 
bilateral MI, and right ACC as well as between the brain-
stem and the left insula and left SI in the gamma band. 
Additionally, patients with CM exhibited increased con-
nectivity from the brainstem to the left V1 in the beta 
band, and they also demonstrated decreased connectiv-
ity between the brainstem and right MI in the 80–100-Hz 
frequency range.

Construction and evaluation of classification models using 
machine learning
In this study, data from 102 HCs, 96 patients with CM, 
and 111 patients with EM were included in the training 
dataset, and the independent testing dataset included 
the data of 11 HCs, 10 patients with CM, and 12 patients 
with EM. Classification models were developed and 
applied for conducting three comparisons: HC vs. CM, 
HC vs. EM, and CM vs. EM. These models were recon-
structed using three sets of key features: amplitude 
responses; amplitude and connectivity measurements; 
and a combination of amplitude, connectivity, and psy-
chometric assessments scores. Notably, these features 
used in the model significantly differed across the groups, 
as indicated in the preceding analyses.

In distinguishing patients with CM from HCs (Fig. 4), 
classification models achieved an accuracy of 57.1%, an 
AUC of 0.597, a sensitivity of 0.53, and a specificity of 
0.61 when they were based on a Gaussian SVM (kernel 
scale: 2) and included only amplitude response features. 
With the addition of connectivity measurements, the 
performance improved to an accuracy of 71.2%, an AUC 
of 0.717, a sensitivity of 0.61, and a specificity of 0.80 
for the model based on a Gaussian SVM (kernel scale: 
201). In the models including the combination of ampli-
tude, connectivity, and psychometric assessment scores 
and using a Linear SVM (kernel scale: 1), an accuracy of 
81.8%, an AUC of 0.863, a sensitivity of 0.77, and a speci-
ficity of 0.86 were obtained.

In distinguishing patients with EM from HCs (Fig. 5), 
classification models that were based on a Gaussian 
SVM (kernel scale: 2.2) and utilised the amplitudes of the 
responses alone and achieved an accuracy of 61.0%, an 
AUC of 0.61, a sensitivity of 0.63, and a specificity of 0.59. 
With the inclusion of connectivity measurements and by 
applying a Gaussian SVM (kernel scale: 8.4) in the mod-
els, the accuracy of the model improved to 72.3%, with 
an AUC of 0.742, a sensitivity of 0.63, and a specificity 
of 0.82. Furthermore, in the models that were based on 
a Gaussian SVM (kernel scale: 8.6) and incorporated the 

psychometric assessment scores with the amplitudes of 
the responses and connectivity and, an accuracy of 77.5%, 
an AUC of 0.836, a sensitivity of 0.73, and a specificity of 
0.82 were obtained.

Finally, in differentiating patients with CM from other 
patients with migraine (Fig. 6), the model that was based 
on a Gaussian SVM (kernel scale: 40.2) and included con-
nectivity measurements alone achieved an accuracy of 
71.5%, an AUC of 0.714, a sensitivity of 0.59, and a speci-
ficity of 0.82. With the incorporation of the PSQI score 
with connectivity measurements, the model based on a 
Gaussian SVM (kernel scale: 2.7) maintained good per-
formance with an accuracy of 70.5%, an AUC of 0.735, a 
sensitivity of 0.66, and a specificity of 0.75. Notably, the 
features used in each classification model were detailed 
in supplementary Table  1. Moreover, the importance 
scores for individual feature in each classification model, 
calculated using the ANOVA algorithm, are illustrated 
in Fig.  7 (a). The top 20 most important features are 
listed. In the classification model, Shapley summary plots 
(swarm charts) show the ten predictors with the highest 
mean absolute Shapley values in each model (Fig. 7(b)). 
In summary, psychometric scores, amplitude and effec-
tive connectivity values contributed significantly to the 
fine performance of the prediction models.

To assess the generalisability of these classification 
models, we applied them to an independent testing data-
set consisting of the data of 11 HCs, 10 patients with 
CM, and 12 patients with EM (Fig.  8). In distinguish-
ing patients with CM from HCs, the model—based on 
evoked amplitude, effective connectivity, and psycho-
metric assessment scores—performed well, achieving 
an accuracy of 76.2%, an AUC of 0.89, a sensitivity of 
0.6, and a specificity of 0.91. In distinguishing patients 
with EM from HCs, the trained model, which also used 
evoked amplitude, effective connectivity, and psycho-
metric assessment scores, performed well, with an accu-
racy of 87%, an AUC of 0.886, a sensitivity of 0.83, and 
a specificity of 0.91. In distinguishing patients with CM 
from patients with EM, the model—based on effective 
connectivity and psychometric assessment scores—per-
formed well, with an accuracy of 72.7%, an AUC of 0.745, 
a sensitivity of 0.6, and a specificity of 0.83. Overall, these 
classification models performed well (all accuracy val-
ues > 72%, AUC values > 0.74) in accurately identifying 
patients with migraine.

Differences of activation and interaction of brainstem 
and cortex between groups
In the ANOVA analysis, significant differences in brain-
stem activation amplitude were observed at 11–15 ms 
(F = 3.69, p = 0.026) across the groups. Post hoc analysis 
indicated that amplitude values were lower in the CM 



Page 9 of 17Hsiao et al. The Journal of Headache and Pain          (2024) 25:185  

group (p = 0.038) and the EM group (p = 0.063) com-
pared to the HC group. In terms of cortical activation, 
evoked amplitude strength at 16–21 ms differed between 
groups in the left insula (F = 6.17, p = 0.0023), left SI 
(F = 2.95, p = 0.05), and left MI (F = 4.08, p = 0.018). Post 
hoc analysis further revealed significant differences, with 
decreased amplitude responses in the left insula (CM vs. 
HC, p = 0.0019; EM vs. HC, p = 0.039), left SI (EM vs. HC, 
p = 0.042), and left MI (EM vs. HC, p = 0.017). Moreover, 
significant differences in Granger causality values were 
observed between the groups (see matrix of F values in 
Supplementary Fig.  1). In summary, migraine patients 
exhibited altered effective connectivity, particularly in 

the pathways from the brainstem to the right insula, right 
V1, left SI, bilateral MI, and right ACC within the high-
gamma frequency range, as well as from brainstem to the 
left SI within the gamma frequency range.

Discussion
This study demonstrated that the altered sensory pro-
cessing in patients with migraine is characterised by 
decreased amplitudes of the responses in the brainstem 
and cortical regions as well as increased effective connec-
tivity between them in the gamma and high-gamma fre-
quency bands. The key discriminative features of sensory 
processing were primarily derived from the amplitudes of 

Fig. 4 Performance of classification models for HCs vs. CM. (a) The accuracy and area under the curve (AUC) of the training model 
including the characteristic feature of activation amplitude in identifying CM. (b) The accuracy and AUC of the training model 
including the characteristic features of activation amplitude and Granger causality values. (b) The accuracy and AUC of the training model 
including the characteristic features of activation amplitude, Granger causality values, and psychometric scores. HCs, healthy controls; CM, chronic 
migraine; V1, primary visual cortex; SI, primary somatosensory cortex; MI, primary motor cortex; ACC, anterior cingulate cortex
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brainstem activity at 11–15 ms and 16–21 ms as well as 
the bilateral SI and MI and the left insula and V1 at 16–21 
ms. Additionally, the effective interactions of the brain-
stem with specific cortical regions at 10–30 ms in distinct 
frequency bands played a significant role in altered sen-
sory processing. Notably, increased effective connectivity 
was more associated with the chronification of migraine. 
By integrating these features with the scores of prominent 
psychometric assessments into SVM models, we identi-
fied multimodal data with discriminative features for 
distinguishing CM or EM patients from HCs. The classi-
fication model performed well in differentiating patients 
with CM (training: accuracy = 81.8%, AUC = 0.86; 

independent testing: accuracy = 76.2%, AUC = 0.89) and 
patients with EM (training: accuracy = 77.5%, AUC = 0.84; 
independent testing: accuracy = 87%, AUC = 0.88) from 
HCs. Furthermore, the model effectively distinguished 
patients with CM from patients with EM (training: accu-
racy = 70.5%, AUC = 0.73; independent testing: accu-
racy = 72.7%, AUC = 0.74). Notably, even when only the 
characteristic features of SSEP responses and connectiv-
ity were included, the classification models performed 
well (with all accuracies > 71.2% and AUCs > 0.717) in 
identifying CM or EM. In summary, the neural signatures 
of early somatosensory processing may provide sufficient 
information for identifying CM or patients with EM.

Fig. 5 Performance of classification models for HC vs. EM. (a) The accuracy and area under the curve (AUC) of the training model 
including the characteristic features of activation amplitude in identifying EM. (b) The accuracy and AUC of the training model 
including the characteristic features of activation amplitude and Granger causality values. (b) The accuracy and AUC of the training model 
including the characteristic features of activation amplitude, Granger causality values, and psychometric scores. HCs, healthy controls; EM, episodic 
migraine; V1, primary visual cortex; SI, primary somatosensory cortex; MI, primary motor cortex; ACC, anterior cingulate cortex
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Abnormalities of evoked responses in patients 
with migraine
In this study, patients with EM and CM exhibited equally 
altered evoked activities during early sensory processing 
in the brainstem, extending later on from the subcortical 
regions to cortical areas, particularly in the insula, SI, V1, 
and MI. These findings indicate the presence of sensory 
processing abnormalities in patients with migraine. These 
findings are consistent with those of previous neuroim-
aging studies, and they support the prevailing idea that 
patients affected by migraine have a different way to elab-
orate somatosensory inputs and to integrate them with 
other sensory modalities [4, 5, 10]. Prior studies identified 
abnormalities in cross-modal visual and sensorimotor 

integration in EM and CM [27, 28]. As for decreased 
brainstem activation during sensory processing, a posi-
tron emission tomography study reported reduced 
activity in the frontal and temporoparietal regions in 
conjunction with brainstem in response to olfactory 
stimulation during the pain-free interval compared with 
controls [29]. Similarly, an fMRI study found reduced 
brainstem activation, particularly during the interictal 
phase [30]. These results align with previous EEG find-
ings, where patients with migraine exhibited significantly 
lower brainstem activation in response to median nerve 
stimulation, particularly in high-frequency oscillations 
[31]. Significant changes were also found in the insula, 
which plays a crucial role in autonomic regulation and 

Fig. 6 Performance of classification models for CM vs. EM. (a) The accuracy and area under the curve (AUC) of the training model 
including the characteristic features of Granger causality values in identifying CM. (b) The accuracy and AUC of the training model 
including the characteristic features of Granger causality values and psychometric scores. CM, chronic migraine; EM, episodic migraine. V1, primary 
visual cortex; SI, primary somatosensory cortex; MI, primary motor cortex; ACC, anterior cingulate cortex
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somatosensation (both of which are altered in patents 
with migraine) [32]. Patients with migraine exhibited a 
reduction in the cortical surface area in the left insula, 
with the most pronounced decrease observed in patients 
with CM [33]. Additionally, an fMRI study revealed the 
decreased dynamic amplitude of low-frequency fluctua-
tions in the bilateral anterior insula among patients with 
migraine without aura [34]. These structural and func-
tional changes in the insula suggest dysfunctional sensory 
processing in patients with migraine. In SI, reduced early 
neuronal activation was corroborated by the decreased 
amplitude of the high-frequency oscillation, reflecting 
more closely the subcortico-cortical network activity 
[35], and a reduced somatosensory evoked neuromag-
netic field [14, 15] in patients with episodic migraine. 
Furthermore, there is much evidence in favour of hypo-
functioning brainstem structures subserving conditioned 
pain modulation (CPM) of cortical activation in EM and 
CM. Reduced thermal pain-induced activation in this 
brainstem pain modulatory system and interconnected 
cortical areas like SI, V1, MI, and superior temporal 
gyrus was previously detected using fMRI and evoked 
EEG in patients with migraine [36–39]. These findings 
suggest a reduced preactivation excitability level for sen-
sory cortices [40], which might be potentially linked to 

the thalamocortical dysrhythmia caused by brainstem 
dysfunction [6, 35].

Aberrant causal relationship of somatosensory processing 
in patients with migraine
Through spectral Granger causality analysis, we observed 
enhanced oscillatory effective connectivity from the 
brainstem to cortical regions in patients with migraine, 
particularly in the gamma and high-gamma frequencies. 
Notably, the experimental design of this study, which was 
specifically tailored for examining brainstem and cortical 
responses to sensory stimulation, enabled the first non-
invasive electrophysiological recording for determining 
the causal relationships of brainstem–cortex interactions. 
An fMRI study revealed increased brainstem connectiv-
ity to the anterior insula and anterior midcingulate cortex 
during respiratory-gated auricular vagal afferent nerve 
stimulation in patients with migraine [41]. This observa-
tion suggests the involvement of the major serotonergic 
and noradrenergic nuclei and pathways located in the 
brainstem in pain modulation. In patients with EM, Liu 
et  al. reported increased effective connectivity from the 
brainstem to the left ACC and right SI as well as from the 
brainstem to the left MI [42]. An abnormal deficiency 
in brainstem activity resulted in negative effects on 

Fig. 7 Importance of features for classification models. (a) The importance scores of features for each model, calculated using analysis of variance 
(ANOVA) algorithm. (b) Shapley summary plots for each classification model. HC, healthy controls; CM, chronic migraine; EM, episodic migraine. Bs, 
brainstem, PSQI, Pittsburgh sleep quality index; PSS, Perceived stress scale; HADS, hospital anxiety and depression score; A, anxiety; D, depression; 
V1, primary visual cortex; SI, primary somatosensory cortex; MI, primary motor cortex; ACC, anterior cingulate cortex. L, left; R, right
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the plasticity of the visual cortex, as shown in migraine 
patients recording visual evoked responses during CPM 
[39]. These findings highlight the potential role of abnor-
mal brainstem–to–cortical connectivity in the neuropa-
thology of migraine. Additionally, a significant increase 
in connectivity between the brainstem and left SI was 
observed during migraine attacks [43]. Leveraging the 
fine temporal resolution of EEG recordings, this study 
analysed EEG signals during the latency period of 10–30 
ms, which likely represents the sequential activation of 
subcortical and cortical neurons through thalamo-cor-
tical and cortico-cortical connections [44]. Regarding 
the characteristic frequency of connectivity, increased 
responses in the sensory cortex in the gamma band are 
linked to abnormalities in sensory processing in patients 

with migraine [45]. Notably, thalamocortical connections 
in pain disorders are believed to be abnormally engaged 
in the gamma band, inducing an ‘edge effect’ that is likely 
due to lateral disinhibition resulting from the asymmetri-
cal inhibitory activity of interneurons at the cortical level 
[46]. Collectively, these findings support the neuropatho-
logical role of thalamocortical dysrhythmia in migraine; 
this dysrhythmia may be induced by decreased regulation 
from monoaminergic nuclei in the brainstem of cortical 
areas at low frequency oscillatory activity bands [6, 35]. 
These dysfunctional subcortical-to-cortical activation can 
induce the emergence of abnormal high level of gamma 
band oscillatory activity in the thalamo-cortical loop gen-
erating high-frequency, phase locked coherent increased 
activation of cortical areas [47]. All this complex pattern 

Fig. 8 Performance of classification models including independent testing data set. (a) The accuracy and area under the curve (AUC) of the model 
in identifying CM. (b) The accuracy and AUC of the model in identifying EM. (b) The accuracy and AUC of the model in identifying CM. HCs, healthy 
controls; CM, chronic migraine; EM, episodic migraine
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of dysrhythmic thalamo-cortico-thalamic activation can 
easily explain the results of the present study, namely a 
co-occurrence of reduced low-frequency evoked activ-
ity and increased effective brainstem connectivity with 
different cortical areas devoted to high-frequency mul-
tisensory processing. Furthermore, we discovered that 
this atypical effective connection pattern between the 
brainstem and cortical regions is more evident in patients 
with CM. These findings were corroborated by resting-
state fMRI studies, which revealed a significant recon-
figuration of large-scale functional cortical networks in 
CM patients, likely due to a central sensitization-induced 
reorganization process [48]. This process of sensitisation 
boosts the level of effective connectivity with the cortical 
mantle (insula, SI and V1) not only in relation to healthy 
subjects, but also to episodic migraineurs. This was 
not the case for the right motor cortex, which showed 
reduced connectivity in CM patients compared to EM 
patients. This finding can be interpreted by acknowledg-
ing the significant antinociceptive role of the motor cor-
tex, which is impaired due to the chronic manifestation 
of migraine, similar to other forms of chronic pain [49].

Performance of classification models including multimodal 
data
In this study, with the combination of the characteris-
tic features of SSEP amplitude and connectivity during 
sensory processing along with the scores of psycho-
metric assessments, classification models performed 
well in distinguishing CM and patients with EM from 
HCs (all accuracy values > 76%, all AUC values > 0.84) 
and in identifying migraine subtypes (all accuracy val-
ues > 70%, all AUC values > 0.73). Our previous studies 
have revealed that somatosensory-related oscillations 
reflect altered central processing involving excitabil-
ity and habituation [14, 15, 25]. The classification 
model including these characteristic sensory features 
performed well in identifying patients with CM [25]. 
Furthermore, Zhu and colleagues [50] effectively distin-
guished HCs from patients with migraine during inter-
ictal or ictal periods by utilising classification models 
including latency, amplitude, and high-frequency power 
of somatosensory-evoked potentials. Notably, even 
when only the characteristic features of SSEP ampli-
tude and connectivity were included, the classification 
models still performed well (with all accuracies > 71.2% 
and AUCs > 0.717) in identifying CM or patients with 
EM. Given that migraine is linked to altered central 
sensory processing, involving neuronal excitability, 
inhibition, or synchronisation [5, 6, 8, 10, 51], these 
dysfunctional central responses to sensory stimulation 
may serve as crucial biomarkers for migraine diagnosis. 
Notably, incorporating the scores of key psychometric 

assessments into the classification models significantly 
enhanced their accuracy and AUC, particularly in iden-
tifying patients with CM. This finding aligns with the 
prevailing understanding that migraine is a complex 
disorder with sensory, affective, and cognitive compo-
nents [4–6, 8, 10, 51]. Moreover, these results are con-
sistent with the excellent performance obtained in ML 
studies that leverage neuroimaging resting-state data for 
identifying patients with CM, which involves multiple 
brain networks including sensory, affective, and cogni-
tive domains [9, 24]. Collectively, these results indicate 
that altered brainstem–cortex activities in combination 
with the scores of key psychometric assessments can 
be effectively used to develop clinical decision-support 
tools based on ML algorithms.

Notably, in clinical practice, accurately assessing the 
migraine phase in patients diagnosed with migraine is chal-
lenging. Moreover, dynamic changes in neural excitability 
were noted across migraine phases [11]. For addressing 
this challenge, in this study, we identified common altera-
tions in sensory processing, regardless of the migraine 
phase, and used these features to develop diagnostic clas-
sification models. By contrast, in previous studies, mag-
netoencephalography (MEG) resting-state connectivity in 
the interictal period within or among networks had > 90% 
of accuracy in identifying CM [9]. Similarly, a functional 
MRI study demonstrated excellent performance, with an 
accuracy of > 84% in distinguishing patients with migraine 
from HCs during headache-free periods [52]. Although 
our approach may lead to slightly reduced model perfor-
mance, it enhances the practical applicability and utility of 
the models in routine clinical settings.

Numerous EEG and MEG studies have investigated 
resting-state activities, focusing on oscillatory power and 
connectivity parameters, to explore the underlying neu-
ropathological mechanisms of migraine and to develop 
models for migraine identification [9, 24]. Although these 
studies have reported strong performance by their mod-
els, their findings on resting-state alterations in migraine 
remain inconclusive. By contrast, altered sensory process-
ing has been consistently established as a crucial hallmark 
of migraine neuropathology [6, 8, 11, 14, 15, 40, 51], sug-
gesting that sensory responses are key features for develop-
ing classification models for migraine identification. Given 
the complexity of sensory, affective, and cognitive disor-
ders in migraine [4–6, 8, 10, 51], integrating multimodal 
data—sensory responses, psychometric scores, and rest-
ing-state activities—represents a promising next step for 
developing highly effective diagnostic tools for migraine.

Limitations
Our study has several limitations. First, further research 
is needed to determine whether the classification models 
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developed in this study can effectively differentiate other 
pain disorders, such as tension-type headache, fibromyal-
gia, or lower back pain, from migraine. Although distinct 
alterations in sensory processing have been observed in 
various pain disorders [14], the present findings do not 
establish that the aberrant brainstem–cortex activation and 
interactions are specific to patients with migraine. Second, 
due to the limited spatial resolution of the EEG approach, 
the activation of specific brainstem subregions, which play 
distinct roles in the neuropathology of migraine, could not 
be detected. Third, the selected latency period (11–30 ms) 
and the direction of effective connectivity (from the brain-
stem to cortex) in this analysis limit the exploration of 
sensory processing. Further investigation is warranted to 
assess the effects of higher-order functional integration and 
downstream sensory modulation in patients with migraine. 
Fourth, the differences in gender ratios across groups may 
have influenced the performance of the classification mod-
els and require further exploration. Finally, since dynamic 
changes in neural excitability have been observed across 
different migraine phases [6, 8, 11, 51], caution is warranted 
when interpreting electrophysiological findings in this study 
that were examined without accounting for migraine phase.

Conclusion
Decreased activation in brainstem and cortical regions 
and increased brainstem-to-cortex effective connectiv-
ity are characteristic of the abnormal sensory processing 
in migraine. This enhanced connectivity in the gamma is 
indicative of the progression toward migraine chronifica-
tion. In this study, multimodal data incorporating EEG 
features and psychometric assessment scores were used 
to develop reliable and generalisable models for identify-
ing patients with migraine and for differentiating between 
CM and patients with EM. With its advantages in terms of 
affordability, wide availability, and potential for mobile use, 
evoked EEG recording combined with ML algorithms can 
serve as a rapid clinical decision-support tool for diagnos-
ing headache disorders.
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