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Abstract 

Objective  To delineate the structural connectome alterations in patients with chronic migraine (CM), episodic 
migraine (EM), and healthy controls (HCs).

Background  The pathogenesis of migraine chronification remains elusive, with structural brain network changes 
potentially playing a key role. However, there is a paucity of research employing graph theory analysis to explore 
changes in the whole brain structural networks in patients with CM and EM.

Methods  The individual structural brain connectome of 60 patients with CM, 34 patients with EM, and 39 healthy 
control participants were constructed by using deterministic diffusion-tensor tractography. Graph metrics includ-
ing global efficiency, characteristic path length, local efficiency, clustering coefficient, and small-world parameters 
were evaluated to describe the topologic organization of the white matter structural networks. Additionally, nodal 
clustering coefficient and efficiency were considered to assess the regional characteristics of the brain connectome. 
A graph-based statistic was used to assess brain network properties across the groups.

Results  Graph theory analysis revealed significant disruptions in the structural brain networks of CM patients, char-
acterized by reduced global efficiency, local efficiency, and increased characteristic path length compared to HCs. 
Additionally, CM patients exhibited significantly lower local efficiency than EM patients. Notably, the CM group 
demonstrated marked reductions in local clustering coefficient and nodal local efficiency in the frontal and temporal 
regions compared with the healthy control group and EM group. Nodal local efficiency can effectively distinguish 
CM from EM and HCs. Moreover, the disrupted topologic efficiency was significantly associated with attack frequency 
and MIDAS score in patients with migraine after Bonferroni correction.
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Conclusion  Decreased structural connectivity in the frontal and temporal regions may serve as a neuroimaging 
marker for migraine chronification and disease progression, providing valuable insights into the pathophysiology 
of chronic migraine.

Keywords  Migraine, Structural connectivity, Diffusion tensor imaging

Introduction
Migraine is a prevalent brain dysfunction disease, char-
acterized by recurrent, moderate to severe headache 
accompanied by photophobia, phonophobia, nausea and 
vomiting [1, 2]. The global migraine prevalence is about 
14%, imposing a substantial economic burden on both 
individuals and society [3, 4]. About 3% of patients with 
episodic migraine (EM) will be converted into chronic 
migraine (CM) every year [5]. CM is defined as headache 
exceeding 15  days per month, of which migraine-like 
headache is greater than 8 days, persisting for more than 
three consecutive months [6].

Despite extensive research, the precise pathophysi-
ological mechanisms underlying the chronification of 
migraine remain elusive [6, 7]. Risk factors such as anxi-
ety, depression, obesity, and excessive use of acute anal-
gesic have been associated with the progression of EM to 
CM [8, 9]. Neuroimaging studies suggest that both EM 
and CM may be linked to dysfunctions within neural net-
works that span multiple cortical and subcortical brain 
regions [10, 11]..

Recent studies utilizing diffusion tensor imaging (DTI) 
have highlighted extensive micro-structural changes in 
white matter among patients with migraine, especially 
those with CM [12–14]. The human brain functions as 
an intricate network, where advanced neuroimaging 
techniques, coupled with graph-based analyses, allow 
for the detailed examination of the brain’s structural and 
functional connectomes [15]. This brain network primar-
ily comprises interconnected nodes and edges, offering 
valuable insights into the pathogenesis of neurological 
disorders, including migraine [16].

Previous studies have primarily focused on alterations 
in functional connectivity network properties in migraine 
patients [17, 18]. However, there is a paucity of research 
employing graph theory analysis to explore changes in 
the whole brain structural networks in patients with CM 
and EM. Additionally, it remains unclear whether the 
topological efficiency of the white matter structural con-
nectome within neural circuits involved in pain and emo-
tion modulation correlates with migraine chronification 
and disease progression.

The primary objective of this study is to investigate the 
changes in white matter micro-structure and brain net-
work abnormalities in patients with EM and CM using 
structural connectomics. By identifying the potential 

alterations in white matter topological efficiency underly-
ing migraine chronification, this study aims to elucidate 
the relationship between structural connectivity effi-
ciency and clinical characteristics of migraine.

Methods
Participants
The research was carried out using a cross-sectional 
design and was an observational study. One hundred and 
thirty-three participants, including 60 patients with CM, 
34 patients with EM and 39 healthy controls (HCs), were 
consecutively enrolled from the headache outpatient unit 
at Beijing Tiantan Hospital (Capital Medical University) 
from October 2020 to March 2023. Patients were consid-
ered for inclusion based on the following criteria: The fol-
lowing criteria must be met: 1) a diagnosis of EM or CM 
(all patients had migraine without aura) according to the 
International Classification of Headache Diseases, Third 
Edition (ICHD-3) [19]; 2) 16–65 years of age; 3) the abil-
ity to perform a magnetic resonance imaging (MRI) scan 
effectively; and 4) the absence of preventive treatment 
for a period of at least three months. When it came to 
patients and HCs, the general exclusion criteria were as 
follows: 1) when combined with other types of primary 
headache and pain disorders; 2) when pregnant or breast-
feeding; 3) when combined with other neurological, 
cardio-cerebrovascular, and endocrine system diseases; 
4) any history of drug or alcohol abuse; 5) a first-degree 
relative who suffers from headaches; 6) improper quality 
of MRI data (significant susceptibility artefact or incom-
plete raw MRI data); and 7) significant brain lesions or 
white matter hyperintensities (Fazekas score greater than 
1, especially at the level of the lateral ventricular body).

Demographic data and neuropsychological tests
Demographics, body mass index (BMI), headache dis-
ease duration (years), Visual Analogue Scale (VAS), 
Patient Health Questionnaire-9 (PHQ-9) scores, Head-
ache Impact Test-6 (HIT-6) scores, Generalized Anxiety 
Disorder-7 (GAD-7) scores and Pittsburgh Sleep Quality 
Index (PSQI) scores were collected in all patients. Symp-
toms of depression and anxiety were assessed using the 
GAD-7 and the PHQ-9, respectively. The PSQI proved to 
be a valuable instrument in assessing sleep patterns and 
quality. Additionally, the HIT-6 was utilized to evaluate 
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the severity of headaches. The PHQ-9 was frequently 
employed as a screening tool for depression, with a sug-
gested threshold score of 10 [20]. On the GAD-7, scores 
of 10 or greater were indicative of generalized anxiety 
disorder [21]. Poor sleep quality was defined as a PSQI 
score of seven or higher [22].

Approval of the local ethics committee of Beijing 
Tiantan Hospital, Capital Medical University (num-
ber: KY2022-044) granted this sub-study of the ongoing 
China HeadAche DIsorders RegiStry Study (CHAIRS, 
unique identifier: NCT05334927) designation. In adher-
ence to the tenets outlined in the Declaration of Helsinki, 
prior to their involvement, every participant provided 
informed consent.

MRI acquisition
At the National Neurological Center of Beijing Tiantan 
Hospital, 3D T1 structural and diffusion MRI data were 
acquired using a GE 3.0 Tesla MR scanner (Signa Pre-
mier, GE Healthcare) equipped with a 48-channel head 
coil. The participants were instructed to remain motion-
less with their eyes closed during the MRI acquisition. 
All the following parameters were utilized in order to 
acquire T1 structural images: The MP-RAGE sequence 
has a preparation time of 880 ms, an acquisition time of 
four minutes, a recovery time of 400 ms, a field of view of 
250 × 250 mm2, an acceleration factor of 2, a flip angle of 
8°, slices of 192, and a spatial resolution of 1 × 1 × 1mm3. 
The DTI parameters that were utilized in this study were 
as follows: the repetition time was set at 5285  ms, the 
data matrix was set at 104 × 104, the echo time was set 
at 85  ms, the slice thickness was set at 2  mm, the field 
of view was set at 208 × 208 mm2, the resolution was set 
at 2.0 × 2.0 × 2.0 mm3, the number of slices was 78. The 
diffusion MRI data include 9 images of b = 0, 50 gradient 
directions with a b-value of 1000 s/mm2 and 50 gradient 
directions with 2000s/mm2 under the anterior-to-poste-
rior phase encode direction. Additionally, we acquired 4 
images of b = 0 and 3 gradient directions with 2000s/mm2 
under the posterior-to-anterior phase encode direction.

Data preprocessing procedure
Analyses were performed by two observers (YL M, D Q) 
respectively. Briefly, the preprocessing procedure for the 
DTI data included eddy current and motion artifact cor-
rection, estimation of the diffusion tensor, and calculation 
of the fractional anisotropy (FA). Before pre-processing, 
two expert neuroradiologists visually inspected the DTI 
image to screen for noisy artifacts. Images were pro-
cessed by using the FMRIB software library (FSL, version 
6.0.1; http://​www.​fmrib.​ox.​ac.​uk/​fsl). The dcm2niigui 
tool was used to convert the DICOM format of all dif-
fused data into NIFTI format. The topup tool was applied 

for estimating and correcting susceptibility induced dis-
tortions by using anterior to posterior encoding direction 
and posterior to anterior phase-encoding direction. We 
used the eddy_openmp command to correct head motion 
and eddy current distortions. Brain masks from the b0 
image of each participant was created by using FSL’s BET 
(Brain Extraction Tool). The FSL toolbox DTIFIT fits the 
pre-processed image based on a diffusion tensor model 
to yield FA values.

Network Construction
White matter tractography: We employed the Fiber 
Assignment by Continuous Tracking (FACT) method 
available in Diffusion Toolkit (http://​www.​track​vis.​org/​
dtk/) for white matter fiber tracking [23]. Tracts in the 
diffusion-tensor imaging were generated by seeding vox-
els with FA values greater than 0.2 to perform whole-
brain fiber tracking. For each seed, which consisted of 
eight seeds per voxel, a streamline was initiated. Tracking 
was terminated if the tracking angle exceeded 45 degrees 
or the FA value of the traversed voxel fell below 0.2 [24].

Network node definition: For the network analysis, we 
defined nodes using the Automated Anatomical Labe-
ling (AAL) template [25] consisting of 90 brain regions 
after excluding the cerebellum. Initially, individual 
T1-weighted images were registered to the B0 DTI image 
space. The transformed T1-weighted images were then 
non-linearly normalized to the ICBM152 T1 template 
in the MNI standard space [26]. Subsequently, the AAL 
template was transformed from the MNI space to the 
individual DTI space using the inverse transformation, 
establishing the nodes for the structural connectome net-
work in the individual’s brain space.

Network edge definition: Edges in the DTI structural 
connectome network were defined based on the pres-
ence of at least three white matter fiber tracts between 
two brain regions [27]. Only direct connections between 
two regions of interest (ROIs) were counted if the fiber 
passes through both ROIs without being interrupted by 
other regions. Notably, the mean FA values of white mat-
ter fibers between two brain regions was considered the 
weight of the network edge [24, 28]. Consequently, each 
participant’s structural connectome network comprised a 
weighted network of 90 nodes, represented as a symmet-
ric 90 × 90 matrix based on FA values.

Statistical analysis
All clinical data were analyzed using Stata 15.0 soft-
ware (StataCorp LLC, TX, USA). Continuous variables 
(ages, BMI) are reported as mean ± standard deviation 
(SD) or median with interquartile range and analyzed 
by the independent sample t-test, Mann–Whitney test, 
or one-way analysis of variance (One-way ANOVA) as 

http://www.fmrib.ox.ac.uk/fsl
http://www.trackvis.org/dtk/
http://www.trackvis.org/dtk/
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appropriate. The chi-square test was used to compare 
differences between genders. P-values < 0.05 were con-
sidered statistically significant. For analyses involving 
multiple comparisons, false discovery rate (FDR) correc-
tion was applied. The following graph metrics were eval-
uated in order to provide a description of the topologic 
organization of the white matter structural networks: 
global efficiency, characteristic path length, local effi-
ciency, clustering coefficient, and small-world parame-
ters. Moreover, nodal clustering coefficient and efficiency 
were taken into account when considering regional char-
acteristics of the brain connectome. Gretna (http://​www.​
nitrc.​org/​proje​cts/​gretna/) was utilized for all the net-
work analyses, and BrainNet Viewer (http://​www.​nitrc.​
org/​proje​cts/​bnv/) was utilized for the visualization of 
the results. Using age and gender as covariates, a general 
linear model was carried out in order to ascertain the dif-
ferences that exist between the groups in terms of global 
and regional network metrics. The FDR correction was 
utilized in order to rectify the multiple comparisons that 
were obtained for the regional properties.

We utilized a network-based statistic (NBS) approach 
to identify the distinct connected subnetwork (com-
ponent) with varying structural connections between 
the patients and healthy control groups [29]. The NBS 
analysis was conducted with edge-wise t-tests, applying 
an edge-level significance threshold of p < 0.05. Statisti-
cal significance was determined after 5,000 permuta-
tions, and subnetworks with a corrected component-level 
p < 0.05 were considered statistically significant. In order 

to assess the potential discriminatory capability of the 
network metrics among distinct groups, a receiver oper-
ating characteristic curve (ROC) analysis was conducted 
on those metrics that exhibited statistically significant 
group differences. Pearson correlation analyses were 
conducted between the network metrics showing sig-
nificant group differences and the clinical scores within 
the patient group. Bonferroni correction was applied to 
account for multiple comparisons in these correlation 
analyses.

Results
Demographics and clinical characteristics
We recruited 152 participants with 69 patients with 
CM, 37 participants with EM, and 46 HCs in our initial 
cohort. Following quality control measures, nine CM 
participants were excluded due to poor MRI data qual-
ity (n = 3) and significant white matter hyperintensities 
(n = 6). Similarly, three EM participants were excluded 
for poor MRI data quality (n = 2) and white matter hyper-
intensities (n = 1). Seven HCs were excluded due to poor 
MRI data quality (n = 3) and existing white matter hyper-
intensities (n = 4) (Fig.  1). There were no differences in 
age, gender ratio and BMI found between the groups. For 
the clinical characteristics of patients with migraine, CM 
group showed higher attack frequency, MIDAS score, 
GAD-7 score, and PHQ-8 score (Table 1).

Enrolled participants

(n = 152)

HCs

(n = 46)

CM patients

(n = 69)

Seven participants excluded

due to:

1) Poor quality (n = 3)

2) white matter hyperintensity

(n = 4)

Finally included healthy

controls (n= 39)

Finally included CM

patients (n= 60)

EM patients

(n = 37)

Finally included EM 

patients (n= 34)

Three participants excluded

due to:

1) Poor quality (n = 2)

2) white matter hyperintensity

(n = 1)

Nine participants excluded due

to:

1) Poor quality (n = 3)

2) white matter hyperintensity

(n = 6)

Fig. 1  Flowchart of the process for participant inclusion

http://www.nitrc.org/projects/gretna/
http://www.nitrc.org/projects/gretna/
http://www.nitrc.org/projects/bnv/
http://www.nitrc.org/projects/bnv/
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Structural brain networks: global network properties
The global topologic network properties of the HCs, EM 
and CM groups were analyzed and reported in Fig.  2. 
When compared with healthy control subjects, patients 
with CM showed decreased global efficiency (p = 0.02) 
and local efficiency (p < 0.01). Characteristic path length 
was increased in patients with CM compared to HCs 
(p = 0.02). When compared with HCs, patients with EM 
showed no significant group difference in global effi-
ciency, local efficiency, and characteristic path length. 
When compared with patients with EM, patients with 
CM showed decreased local efficiency (p = 0.03).

Structural brain networks: local network properties
When compared with HC group, we identified regions 
with less local clustering coefficient in the EM group in 
left middle frontal gyrus (p < 0.05, corrected). Moreover, 

in comparison to the HC group, CM group showed less 
local clustering coefficient in left middle frontal gyrus 
and right dorsolateral part of the superior frontal gyrus 
(p < 0.05, corrected). Additionally, compared with EM 
group, CM group showed less local clustering coeffi-
cient in right dorsolateral part of the superior frontal 
gyrus (p < 0.05, corrected) (Fig. 3).

For the nodal local efficiency, compared with HC 
group, patients with EM showed significantly lower 
nodal local efficiency in right dorsolateral part of the 
superior frontal gyrus and left gyrus rectus; patients 
with CM showed significantly lower nodal local effi-
ciency in that included the following regions: right dor-
solateral part of the superior frontal gyrus, left gyrus 
rectus, right middle frontal gyrus, left opercular part 
of the inferior frontal gyrus, left hippocampus and left 
inferior temporal gyrus (p < 0.05, corrected). Lastly, 

Table 1  Demographic and clinical data

EM Episodic migraine, CM Chronic migraine, BMI Body mass index, VAS Visual analogue scale, HIT-6 Headache Impact Test-6, PHQ-9 Patient Health Questionnaire-9, 
GAD-7 Generalized Anxiety Disorder-7, PSQI Pittsburgh Sleep Quality Index
a One-way ANOVA,
b Chi-square test,
c Mann–Whitney U test,
d Independent samples t test

Controls (n = 39) EM (n = 34) CM (n = 60) P value

Ages, years 34.97 ± 9.91 36.79 ± 13.9 39.37 ± 14.19 0.25a

BMI 22.76 ± 3.43 24.06 ± 4.13 22.89 ± 3.67 0.26a

Gender (female/male) 23/16 21/13 44/16 0.28b

Attack frequency (days/month) / 6 (4) 25 (15)  < 0.001c

Disease duration (years) / 11.5 (16) 16(19) 0.11c

Headache intensity (VAS) / 6.67 ± 1.34 7.21 ± 1.50 0.08d

MIDAS score / 50 (49) 100 (112)  < 0.001c

HIT-6 score / 64 (11) 66 (8) 0.21c

PHQ-9 score / 4 (6) 11 (10)  < 0.001c

GAD-7 score / 3 (5) 8 (10)  < 0.001c

PSQI score / 8 (6) 11 (9) 0.06c

Fig. 2  Violin plots depicting group differences in global efficiency (a), local efficiency (b), and characteristic path length (c) of white matter 
structural FA networks. * p < 0.05, **p < 0.01
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when compared with EM group, CM group showed sig-
nificantly lower nodal local efficiency in right middle 
frontal gyrus, left opercular part of the inferior fron-
tal gyrus, left hippocampus and left inferior temporal 
gyrus (p < 0.05, corrected) (Fig. 4).

Structural brain networks: network‑based statistic
The NBS analysis was performed to explore the con-
nected sub-network (component) with altered FA val-
ues with gender and age as covariates. When compared 
with HC group, EM group showed one decreased com-
ponent of FA values with 4 nodes and 3 connections 
that included the following regions: right angular gyrus, 
right insula, right parahippocampal gyrus, and right 

lingual gyrus (corrected p = 0.01). When compared 
with HC group, CM group showed one decreased com-
ponent of FA values with 16 nodes and 15 connections 
that included the subcortical nuclei (bilateral thalamus, 
basal ganglia) and cortical regions (corrected p = 0.0001). 
When compared with EM group, CM group showed one 
decreased component of FA values with 4 nodes and 3 
connections that included the following regions: right 
orbital part of the middle frontal gyrus, right orbital part 
of the inferior frontal gyrus, right middle temporal gyrus, 
and right cuneus (corrected p = 0.01) (Fig. 5).

Fig. 3  The distribution of the brain regions, left (L) and right (R), with significantly lower local clustering coefficient in the different groups. The 
regions with significant group differences (HC > EM, HC > CM EM > CM; p < 0.05, corrected) were colored in blue. And p-values for each significant 
region are as follows: p-value of MFG.L in HC > EM = 0.0018, p-value of SFGdor.R in HC > CM = 0.000015, p-value of MFG.L in HC > CM = 0.0006, p-value 
of SFGdor.R in EM > CM = 0.002. MFG.L = left middle frontal gyrus, SFGdor.R = right dorsolateral part of the superior frontal gyrus

Fig. 4  The distribution of the brain regions, left (L) and right (R), with significantly lower nodal local efficiency in the different groups. The regions 
with significant group differences (HC > EM, HC > CM EM > CM; p < 0.05, corrected) were colored in blue. And p-value of SFGdor.R in HC > EM = 0.01, 
p-value of REC.L in HC > EM = 0.008, p-value of SFGdor.R in HC > CM = 0.0001, p-value of MFG.R in HC > CM = 0.004, p-value of IFGoperc.L 
in HC > CM = 0.01, p-value of REC.L in HC > CM = 0.0006, p-value of HIP.L in HC > CM = 0.003, p-value of ITG.L in HC > CM = 0.0008, p-value of MFG.R 
in EM > CM = 0.01, p-value of IFGoperc.L in EM > CM = 0.001, p-value of HIP.L in EM > CM = 0.004, p-value of ITG.L in EM > CM = 0.002. SFGdor.R = right 
dorsolateral part of the superior frontal gyrus, REC.L = left gyrus rectus, MFG.R = right middle frontal gyrus, IFGoperc.L = left opercular part 
of the inferior frontal gyrus, HIP.L = left hippocampus, ITG.L = left inferior temporal gyrus
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ROC curve analysis
The receiver operating characteristic (ROC) curves of 
mean nodal local efficiency about significant group dif-
ference effectively distinguished HC, EM, and CM par-
ticipants. Specifically, mean nodal local efficiency could 
differentiate EM from HC with an AUC of 0.70 (p < 0.01), 
CM from HC with an AUC of 0.81 (p < 0.01), and CM 
from EM with an AUC of 0.77 (p < 0.01) (Fig. 6). No sig-
nificant results were found for the other network metrics 
tested.

Correlation analysis
Within the migraine patients, the characteristic path 
length and local efficiency were significantly correlated 
with the MIDAS scores (characteristic path length: 

r = 0.38, p = 0.0003; local efficiency: r = −0.37, p = 0.0004). 
Moreover, the nodal local efficiency of left opercular part 
of inferior frontal gyrus and right middle frontal gyrus 
were significantly correlated with the attack frequency 
(left opercular part of inferior frontal gyrus: r = −0.35, 
p = 0.0005; right middle frontal gyrus: r = −0.37, 
p = 0.0002). All the p-values above were still significant 
after Bonferroni correction.

Discussion
In our study, we examined the topological alterations 
in the structural brain connectome of participants with 
EM and CM. Diminished global efficiency and increased 
characteristic path length was found in the CM group 
compared with the HC group, indicating a less efficient 
structural network and longer information transfer path-
ways. Both EM and CM groups exhibited significantly 
reduced local efficiency compared to HCs, with CM 
showing lower local efficiency than EM. Moreover, the 
CM group demonstrated significant reductions in local 
clustering coefficient and nodal local efficiency in fron-
tal and temporal brain regions compared to HCs and 
EM group. Nodal local efficiency effectively differenti-
ated between CM, EM, and HC groups. Furthermore, 
the nodal local efficiency of specific brain regions, such 
as the left opercular part of the inferior frontal gyrus 
and right middle frontal gyrus, were negatively corre-
lated with attack frequency. These findings align with the 
pathophysiology, implicating frontal and temporal lobe 
brain networks in anxiety, depression, and pain modula-
tion in migraine [11].

Previous studies have laid the groundwork for under-
standing the intricate details of white matter micro-
structural imaging in the context of migraine with 
voxelwise approaches [30]. Yu et  al. have found that 

Fig. 5  The Connection graphs show the disrupted structural connections in the different groups identified by using NBS analysis. The blue curves 
indicate the lower FA values between the two regions (HC > EM, HC > CM, EM > CM)

Fig. 6  The receiver operating characteristic (ROC) curve of the mean 
nodal local efficiency about significant group difference exhibited 
good performance to differentiate among HC, EM, and CM 
participants. AUC, area under the curve
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patients with EM showed significantly lower FA in sev-
eral brain regions, including the subcortical white matter 
of frontal lobe, temporal lobe, and parietal lobe [12]. Sim-
ilarly, another study using tract-based spatial statistics 
(TBSS) analysis revealed widespread increases in radial 
diffusivity (RD) and mean diffusivity (MD) values in the 
CM group compared to HCs [13].. In our study, the NBS 
analysis revealed distinct reductions in FA connectivity 
components in both EM and CM groups compared to 
HCs, showcasing specific nodes and connections impli-
cated in each condition. While both patients with CM 
and EM exhibited micro-structural damage, as measured 
by TBSS, graph theory analysis revealed that patients 
with CM displayed greater significant alterations at the 
network level. Similarly, examining global topologi-
cal network features in the context of the chronification 
of migraine, individuals with CM exhibited significant 
alterations compared to control participants. In contrast, 
those with EM showed minimal abnormalities. Based on 
our findings and existing literature, we propose that the 
chronification of migraine is not solely attributable to 
micro-structural alterations in white matter. Instead, it is 
suggested that a severe disruption of structural connec-
tions between brain areas, forming a network, is neces-
sary to induce changes in information integration and 
organization, leading to migraine chronification.

Recent studies have highlighted the structural and 
functional connectivity alterations in migraine, reveal-
ing critical insights into its pathophysiology. For instance, 
Michels et  al. observed that migraine patients exhibited 
a more segregated network topology, with CM patients 
showing greater modularity compared to EM, suggest-
ing maladaptive reorganization in headache-related brain 
circuits [31, 32]​. Similarly, Dai et  al. reported enhanced 
integration and efficiency in global network properties 
among EM patients, correlating with clinical measures 
such as disease duration and headache impact scores [33]. 
In CM, DeSouza et  al. found reduced global and local 
efficiency alongside increased segregation, with disrup-
tions prominently in the limbic and insular cortices [34]. 
Structural network alterations extending to pain process-
ing and modulation regions, such as the posterior cingu-
late and inferior parietal lobule, were further emphasized 
by Silvestro et  al., who introduced a connectopathy 
model for migraine​ [35]. Li et al. focused on the vulner-
ability of rich-club regions, which showed increased 
feeder connection density in migraine patients, enhanc-
ing integration within pain-related circuits [36]​. Lastly, 
Planchuelo-Gómez et al. underscored the coexistence of 
strengthened subcortical and weakened cortical connec-
tions in migraine, providing a nuanced understanding 
of structural connectivity changes [31]. These findings 
collectively underscore the importance of investigating 

global and regional network properties to elucidate the 
mechanisms underlying migraine chronification and pro-
gression. Moreover, recent studies on migraine-related 
brain networks have provided critical insights into the 
pathophysiological mechanisms of chronic migraine. 
Hosp et  al. utilized DTI-based global tractography to 
construct the migraine-related pain network, identify-
ing the insular cortex as a central hub connecting sen-
sory, cognitive, and modulatory pathways, with white 
matter tract integrity closely linked to self-reported pain 
levels [37]. Borsook et al. highlighted the importance of 
subliminal neural dynamics and unconscious brain reor-
ganization preceding chronic pain, suggesting that early 
interventions could mitigate the transition to chronic 
pain states [38]. These findings support the present study 
and further validate the critical role of disrupted struc-
tural network efficiency in chronic migraine.

Examining functional connectomes, a magnetoen-
cephalographic study revealed reduced total node 
strength within pain-related cortical regions (bilateral 
primary and secondary somatosensory cortices, insula, 
medial frontal cortex, and anterior cingulate cortex) in 
CM patients, particularly in the beta band, compared 
to controls [39]. Notably, negative correlations between 
attack frequency and node strength were evident in the 
bilateral anterior cingulate cortex across all migraine 
patients. In another resting-state functional MRI study, 
Lee et  al. have proposed that patients with CM exhibit 
enhanced connectivity within the pain matrix compared 
to those patients with EM [40]. The functional modifica-
tions observed in the pain network could contribute to 
the process of migraine chronification. These functional 
imaging findings complement our structural network 
analysis, emphasizing the involvement of frontal, parietal, 
and temporal lobes in migraine and its chronification.

The global impairment of structural connectivity in 
individuals with migraine (especially CM) was further 
supported by the presence of extensively distributed 
edges exhibiting reduced FA values in CM patients com-
pared to HC participants and patients with EM. The 
observed decrease in global efficiency and increased 
characteristic path length in patients with CM suggests 
disrupted global information transfer and network inte-
gration. This aligns with findings in previous DTI stud-
ies about migraine, emphasizing the importance of global 
network properties in understanding headache disorders. 
The network-based analysis reveals specific alterations in 
FA values within connected sub-networks. The regions 
affected in EM and CM groups include brain regions 
associated with sensory processing and emotions [5]. The 
involvement of subcortical nuclei (thalamus and basal 
ganglia) and cortical regions in CM further emphasizes 
the widespread impact on structural connectivity.
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The identification of regions with less local clustering 
coefficient and nodal local efficiency in both EM and 
CM groups, particularly in temporal and superior fron-
tal gyrus regions, suggests a disruption in local network 
organization. The local clustering coefficient is a crucial 
metric in network science, quantifying the degree of 
interconnectedness among neighbors of a node in a net-
work [41, 42]. For each node, the local clustering coef-
ficient reflects the extent to which its neighbors form 
tightly connected clusters, calculated as the ratio of the 
actual number of edges between the node’s neighbors 
to the maximum possible number of edges. Moreover, 
in our study, we observed significant group differences 
in the local clustering coefficient of two brain regions—
left middle frontal gyrus, and right dorsolateral part of 
the superior frontal gyrus (left middle frontal gyrus: 
HC > EM; left middle frontal gyrus and right dorsolateral 
part of the superior frontal gyrus: HC > CM; right dor-
solateral part of the superior frontal gyrus: EM > CM). 
These findings suggest that the prefrontal and superior 
frontal regions, particularly right dorsolateral part of 
the superior frontal gyrus, exhibit distinct alterations 
in local clustering patterns during the chronification of 
migraines. In a functional MRI study, Kong et al. found 
that in response to high pain stimuli, both the supe-
rior frontal gyrus and middle frontal gyrus exhibit sig-
nificantly increased fMRI signal, suggesting their active 
involvement in processing and responding to intense 
pain stimuli [43]. Moreover, Mayr et al. found that in CM, 
the superior frontal gyrus exhibits reduced activity with 
increasing pain, indicating its involvement in the altered 
neural responses associated with CM conditions [44].

Nodal local efficiency is another pivotal metric in net-
work neuroscience, offering insights into the efficiency 
of information transfer within specific brain regions 
[45, 46]. Moreover, in our study, we observed signifi-
cant group differences in the nodal local efficiency of six 
brain regions—left gyrus rectus, right dorsolateral part 
of the superior frontal gyrus, right middle frontal gyrus, 
left opercular part of the inferior frontal gyrus, left hip-
pocampus, and left inferior temporal gyrus (left gyrus 
rectus, right dorsolateral part of the superior frontal 
gyrus: HC > EM; left gyrus rectus, right dorsolateral part 
of the superior frontal gyrus, right middle frontal gyrus, 
left opercular part of the inferior frontal gyrus, left hip-
pocampus, and left inferior temporal gyrus: HC > CM; 
right middle frontal gyrus, left opercular part of the infe-
rior frontal gyrus, left hippocampus, and left inferior 
temporal gyrus: EM > CM). Previous studies have already 
demonstrated the role of right middle frontal gyrus, 
left opercular part of the inferior frontal gyrus, left hip-
pocampus, and left inferior temporal gyrus in pain and 
emotions processing [47–51]. We speculated that the 

lower efficient information processing of pain circuit 
within the frontal and temporal lobe may be a biomarker 
of migraine chronification. This conclusion is consist-
ent with the ROC analysis in which, mean nodal local 
efficiency about significant group difference exhibited 
good performance to differentiate among EM and CM 
participants.

Moreover, the observed negative correlation between 
local efficiency and MIDAS scores among migraine 
patients suggests a meaningful connection between 
changes in local network metrics and the clinical sever-
ity of migraine. This association underscores the pro-
found impact of network disruptions on the extent of 
migraine-related disability, providing deeper insights into 
the intricate relationship between brain network altera-
tions and the diseases progression of migraine. We also 
found that the nodal local efficiency of left opercular part 
of inferior frontal gyrus and right middle frontal gyrus 
were negatively correlated with the headache attack fre-
quency, which means the disrupted network efficiency of 
the two regions are significantly associated with migraine 
chronification.

This study has several strengths and novel contribu-
tions. Unlike previous studies that focus on either EM 
or CM, it comprehensively compares CM, EM, and 
HCs, revealing distinct structural connectivity disrup-
tions linked to migraine chronification. By integrating 
multiple graph metrics, such as global/local efficiency 
and clustering coefficient, this work highlights topo-
logical changes, particularly in the frontal and temporal 
regions, as specific markers of chronification​. Moreover, 
the associations between these disrupted metrics and 
clinical features, such as MIDAS scores and attack fre-
quency, enhance its clinical relevance. However, it is 
important to acknowledge that our study, while provid-
ing valuable insights, is not without its limitations. First, 
this study is an observational study with a cross-sectional 
design. Cross-sectional studies capture data at a sin-
gle time point, providing only a snapshot of the disease 
state. This approach does not account for the temporal 
dynamics of disease progression or the potential bidirec-
tional relationships between observed network changes 
and clinical outcomes. Suggest the need for longitudi-
nal studies to identify early imaging markers for disease 
prediction. Second, the study did not control for the 
phase of migraine (ictal or interictal) during MRI scan-
ning, which could potentially influence the results. Third, 
future research should also explore multimodal imag-
ing approaches that combine structural and functional 
MRI to gain a more comprehensive understanding of 
the structural and functional changes in migraine [52]. 
Fourth, while our study primarily focused on cerebral 
regions, the cerebellum also plays an important role in 
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pain modulation in migraine [53]. This could be consid-
ered a limitation, and future research should investigate 
the involvement of the cerebellum in chronic migraine. 
Fifth, the choice of using DTI for tractography in this 
study may not fully capture complex fiber configura-
tions, particularly in regions with crossing fibers. More 
advanced fiber modeling techniques, such as constrained 
spherical deconvolution (CSD) or the ball-and-stick 
model, could provide a more accurate depiction of fiber 
orientation distributions [54]. Future studies should 
employ advanced tractography methods to enhance the 
reliability of connectomic analyses.

Conclusion
This study provides significant insights into the struc-
tural brain networks of migraine patients, particularly 
highlighting the disruptions in both global and local 
properties. Our findings suggest that CM is associated 
with decreased global efficiency, increased character-
istic path length, and reduced local efficiency, which 
are indicative of compromised structural connectivity 
and information transfer within the brain. These altera-
tions were more pronounced in CM patients compared 
to those with EM and HCs, emphasizing the severity of 
network disruptions in chronic migraine. Furthermore, 
our analysis identified specific reductions in local clus-
tering coefficient and nodal local efficiency in the fron-
tal and temporal brain regions of CM patients. These 
metrics effectively differentiated between CM, EM, and 
HC groups, underscoring their potential as neuroimag-
ing markers for migraine chronification. The observed 
negative correlations between nodal local efficiency and 
attack frequency, particularly in the left opercular part 
of the inferior frontal gyrus and the right middle frontal 
gyrus, further support the role of these regions in the 
pathophysiology of migraine.

These findings offer valuable diagnostic markers and 
underscore the importance of network-based metrics 
in understanding and characterizing migraine-related 
structural alterations. By integrating these network met-
rics into clinical practice, there is potential for improved 
migraine classification and personalized treatment 
approaches. Future research should focus on longitudinal 
studies to validate these findings and explore the integra-
tion of multimodal imaging techniques to gain a compre-
hensive understanding of both structural and functional 
changes in migraine.
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