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Abstract
Background  Neuroimaging studies have shown that hypothalamic/thalamic nuclei and other distant brain regions 
belonging to complex cerebral networks are involved in cluster headache (CH). However, the exact relationship 
between these areas, which may be dependent or independent, remains to be understood. We investigated 
differences in resting-state functional connectivity (FC) between brain networks and its relationship with the 
microstructure of the hypothalamus and thalamus in patients with episodic CH outside attacks and healthy controls 
(HCs).

Methods  We collected 3T MRI data from 26 patients with CH during the in-bout period outside the attacks and 
compared them with data from 20 HCs. From resting-state data we derived independent component (IC) networks. 
We calculated the fractional anisotropy (FA) and mean (MD), axial (AD), and radial (RD) diffusivity values of the 
hypothalamus and bilateral thalami and correlated them with resting-state IC Z-scores and CH clinical features.

Results  Patients with CH had less FC between the salience network (SN) and left executive control network (ECN) 
than HCs, but more FC between the default mode network and right ECN. Patients with CH showed lower FA and 
higher MD microstructural hypothalamic metrics than HCs. Patients with CH had a higher bilateral FA metric in the 
thalamus than HCs. The AD and RD diffusivity metrics of the hypothalamus were positively correlated with the disease 
history duration. We found no correlations between the hypothalamic and thalamic diffusivity metrics and the FC of 
the cortical networks.

Conclusion  Our findings presented the possibility of a correlation between the FC of the SN and the inability 
to switch between internalizing and externalizing brain activity during demanding cognitive tasks, such as 
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Introduction
Cluster headache (CH) attacks are characterized by 
severe stabbing pain along the sensory distribution ter-
ritory of the trigeminal nerve and activation of the 
parasympathetic reflex, with the resulting autonomic 
manifestations ipsilateral to the side of the pain [1]. Com-
prehending the biology of CH might clarify misconcep-
tions arising from the social and physical constraints 
imposed by the recurrent pain sickness [2]. Numerous 
clinical and experimental studies have emphasized the 
key role of the hypothalamus in the pathophysiology of 
CH [3]. Of the various nuclei that make up the hypo-
thalamus, the suprachiasmatic nucleus located anteriorly 
(known as the master clock) is assumed to play a major 
role in this context, partially because of its connection to 
brainstem reticular formation and the trigeminal system 
[3]. Invasive deep inhibitory stimulation of the posterior 
hypothalamus can plastically reduce the recurrence of 
CH attacks, highlighting the possibility that more sub-
regions of the hypothalamus may be involved [4]. How-
ever, several other brain areas outside the hypothalamus 
have been identified as sites of abnormality in CH in both 
structure and function [5].

In a whole-brain diffusion tensor imaging (DTI) 1.5T 
MRI study, compared with healthy participants, patients 
with in-bout episodic CH (eCH) under prophylactic 
medications, showed regionally higher absolute (radial 
and mean) diffusivities in the left medial frontal gyrus 
and sub-gyrus and lower absolute (axial, radial, and 
mean) diffusivities in the right parahippocampal gyrus 
of the limbic lobe, all areas previously involved in pain 
modulation [6]. Furthermore, the investigation employ-
ing probabilistic fiber tractography demonstrated the 
presence of highly consistent and direct anatomical con-
nections between all regions exhibiting alterations in dif-
fusivity indices and the ipsilateral hypothalamus [6]. In 
addition, another 1.5T MRI study showed that compared 
with healthy controls, the mean fractional anisotropy of 
the right amygdala, mean axial and mean diffusivity of 
the right caudate nucleus, and radial diffusivity of the 
right pallidum were higher in patients with CH; however, 
the mean anisotropy of the right pallidum was lower [7]. 
Nevertheless, none of these DTI investigations specifi-
cally focused their analyses on the hypothalamic region 
of interest while employing a more detailed 3T scan in 
medication-free patients.

In addition to structural MRI findings, multiple stud-
ies conducted on patients with eCH, both in- and 

out-of-bout, have revealed abnormal functional con-
nectivity between the hypothalamus and various brain 
regions associated with the processing of salient informa-
tion. These regions include the prefrontal cortex, anterior 
cingulate cortex, contralateral thalamus, ipsilateral basal 
ganglia, insula, and the cerebellar hemispheres [8–14]. 
These different and sometimes non-adjacent regions 
of the brain may work in coordination and form brain 
networks. Inside and outside cluster bout, a decreased 
resting-state functional coactivation was detected 
between the hypothalamus (ipsilateral and contralateral 
to the headache) and the salience network (SN) [12]. The 
authors interpret their results as due to a malfunctioning 
central pathway for pain modulation and dysregulation of 
the autonomic nervous system. A model to differentiate 
between CH and migraine found that the most signifi-
cant MRI characteristics indicated crucial involvement 
of the thalamus. Specifically, patients with CH in the out 
of the bout phase exhibit reduced functional connectiv-
ity between the left thalamus and parietal brain regions, 
such as the precuneus and angular gyrus [15]. A more 
recent study showed reduced FC (functional connectiv-
ity) between bilateral thalamus and SN in patients with 
CH compared with healthy controls, regardless of the 
side of pain [16].

However, in most of the abovementioned studies, 
patients with eCH were receiving one or several prophy-
lactic medications at the time of scanning, which may 
have altered the course of the disease and led to biased 
results. The aim of our study was to analyze hypotha-
lamic and thalamic microstructures and simultaneously 
identify independent network abnormalities using func-
tional MRI (fMRI) in patients with eCH who were not 
on prophylactic medications at the time of scanning dur-
ing the bout outside the attacks. We use this multimodal 
approach because contemporary models of human brain 
organization demonstrate that anatomical architecture 
significantly impacts brain function, reflecting multisyn-
aptic interactions within intricate large-scale multidi-
mensional networks [17]. Consequently, functional brain 
features cannot be directly assessed from structural data 
but must be inferred by statistical models of various com-
plexity, as employed in our study [18]. We have already 
utilized that approach in the investigation of migraine 
pathophysiology [19–24]. We hypothesized that the 
microstructural metrics of the thalamus and hypothala-
mus, along with the functional connectivity between cor-
tical networks, may be concurrently altered during the 

recurring headaches. Moreover, we found differences in the thalamic and hypothalamic microstructures that may 
independently contribute to the pathophysiology of CH. These differences may reflect changes in directional 
organization, cell size, and density.
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bout, outside of attacks, and associated with the clinical 
features of eCH patients.

Methods
Participants
Twenty-six patients with eCH (ICHD III code 3.1.1 [1]) 
and strictly unilateral pain (15 of the right side) attend-
ing the Headache Centers of Rome (directed by Prof. 
Vittorio Di Piero) and Latina (directed by Prof. Gianluca 
Coppola) were recruited. Patients were scanned during 
the in-bouts period outside of the attacks. Other primary 
or secondary headache types were excluded by clinical 
and/or instrumental evaluation, as appropriate. We col-
lected information on various patient clinical character-
istics at the time of either the screening visit or the day 
of the scanning session, including daily attack frequency, 
mean severity of headache attacks (0–10), duration of the 
attacks (hours), and duration of history of eCH (years). 
The exclusion criteria were severe systemic or neuro-
logical/neuro-ophthalmological diseases or psychiat-
ric disorders. Patients with eCH and a family history of 
migraine (1st -degree relatives) were also excluded. No 
preventive drugs were permitted during the 3 months 
preceding the observations in eCH. For comparison, 20 
healthy controls (HCs) of comparable age and sex distri-
butions were recruited from among medical students and 
healthcare professionals. They were devoid of any overt 
medical conditions, personal or family history of primary 
headaches or epilepsy, or regular drug intake.

None of the enrolled participants experienced sleep 
deprivation or alcohol ingestion on the day preceding 
the recordings. Caffeinated beverages were not allowed 
on the day of the recording. All the participants provided 
written informed consent to participate in the study, 
which was approved by the local ethics committee (N° 
0295/2023). The study complied with the principles of 
the Declaration of Helsinki for Human Experimentation.

MRI data acquisition
MRI data were obtained using a Siemens 3T Verio scan-
ner with a 12-channel head coil. Structural anatomic 
scans were performed using a T1-weighted sagittal 
magnetization-prepared rapid gradient echo (MPRAGE) 
series (TR: 1900 ms, TE: 2.93 ms, 176 sagittal slices, 
0.508 × 0.508 × 1 mm3 voxels). We acquired an interleaved 
double-echo Turbo Spin Echo sequence proton density 
and T2-weighted images (repetition time: 3320ms, echo 
time: 10/103ms, matrix: 384 × 384, field of view: 220 mm, 
slice thickness: 4  mm, gap: 1.2  mm, 50 axial slices). 
fMRI data were obtained using T2*-weighted echo-
planar imaging (TR, 3000 ms; TE, 30 ms; 40 axial slices, 
3.906 × 3.906 × 3  mm; 150 volumes). Functional resting 
scans lasted for 7  min and 30  s. During these sessions, 
the participants were instructed to relax, avoid motion, 

and keep their eyes closed, but not fall asleep. Upon com-
pletion of the scanning, all participants indicated that 
they had not fallen asleep during the resting-state fMRI 
procedure.

DTI images were obtained with a single-shot echo-
planar image sequence with the following parameters: 
repetition time (TR) = 12,200 ms, echo time (TE) = 94 ms, 
field of view (FOV) = 192 mm x 192 mm, matrix = 96 × 96, 
2 mm x 2 mm in-plane resolution, slice thickness = 2 mm, 
72 continuous axial slices with no gap, 1 volume anterior 
to posterior (AP) phase of encoding direction b = 0  s/
mm2, b = 1000  s/mm2, and 30 diffusion directions were 
isotropically distributed on a sphere where one direction 
lacked diffusion weighting resulting in 31 volumes of the 
AP phase of encoding direction and 1 volume posterior 
to anterior (PA) phase of encoding direction b = 0.

fMRI preprocessing and data analysis
Data pre-processing was performed using SPM12 soft-
ware (http://​www.fil​.ion.uc​l.ac​.uk/spm/) implemented 
in MATLAB (version R2016b, MathWorks, Inc., Natick, 
MA, USA). The data were realigned to the first volume 
to correct for head motion using a 6-parameter rigid 
body process and resliced using cubic spline interpola-
tion. Moreover, in order to check motion, we calculated 
framewise displacement (FD), based on participants’ 
root mean square values (RMS) [25], and their contrast 
was not statistically significant (HCs: 0.0323 ± 0.0374, 
CH patients: 0.0484 ± 0.0333, p = 0.86 unpaired 2-sample 
t-test).

Structural (T1–MPRAGE) and functional data were 
co-registered for each participant. All participant’s f-MRI 
images were normalized by means of SPM12 default 
parameters (normalise est & wri functions). The nor-
malization procedure transformed the structural and 
realigned EPI images into a standard stereotactic space 
based on Talairach and Tournoux [26], which was resa-
mpled 3 mm in each direction.

Finally, the normalized functional images were 
smoothed isotropically with a Gaussian kernel of 8  mm 
full width at half maximum.

Resting-state images were analyzed using spatial inde-
pendent component analysis (ICA) with the infomax 
algorithm, which was implemented in the Group ICA of 
the fMRI Toolbox (GIFT- https:/​/fsl.fm​rib.ox.​ac.u​k/fsl) 
[27].

Two data reduction steps were performed using the 
principal component analysis (PCA): participant-specific 
and group-level steps.

First, the participant-specific data were reduced to 50 
components and the participant-reduced data were con-
catenated across time. Secondly, at the group level, data 
were reduced to 20 group-independent components 

http://www.fil.ion.ucl.ac.uk/spm/
https://fsl.fmrib.ox.ac.uk/fsl
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(ICs) using the expectation-maximization algorithm 
included in GIFT [28].

Two separate group spatial ICAs were also performed 
in the HCs and patients to ensure that the resulting com-
ponents had similar resting-state fluctuations in the two 
groups, that is the resulting components obtained from 
all 46 participants combined.

The number of ICs was estimated using the minimum 
description length (MDL) criterion [29]. Participant-spe-
cific spatial maps and time courses were obtained using 
the back-reconstruction approach (GICA) [30].

An expert neuroradiologist (F.C.) analyzed all group 
ICs identifying the RSNs [31, 32], omitting those located 
in the CSF, white matter, or with low correlation to gray 
matter because they can be artifacts, such as eye move-
ments, head motion, or ballistic artifacts.

Indeed, we obtained eight functional networks: visuo-
spatial (IC1), default mode network (DMN, IC3), execu-
tive control (ECN, IC5), salience (SN, IC7), ECN right 
and left (IC10 & IC12), DMN (IC16, ventral part), and 
medial visual (IC19) to be processed in the following step.

The Functional Network Toolbox (FNC; ​h​t​t​​p​:​/​/​​t​r​e​​n​d​​s​c​e​
n​t​e​r​.​o​r​g​/​s​o​f​t​w​a​r​e​/​g​i​f​t​/​​​​​) [27] was used to evaluate whether 
there were different correlations between the groups’ net-
works (expressed as CorrPosΔ, i.e. the difference in cor-
relation between groups of each networks’ combination). 
It also shows the constrained maximal time-lagged (lag) 
correlation for every pair of component combinations.

Bandpass filter values were set between 0.033  Hz and 
0.13 Hz.

DTI
Before pre-processing, all DTI volumes were visually 
inspected to screen for noisy artifacts due to cardiac pul-
sations, signal dropout, and motion artifacts.

Functional MRI of the Brain (FMRIB) Software Library 
(FSL version 6.0.6, https:/​/fsl.fm​rib.ox.​ac.u​k/fsl) was used 
to image data process [33–35].

Firstly, the b = 0 volumes AP and PA phase-encoding 
directions were used as references, and were processed 
by means of top-up tool to estimate [36] and correct [33] 
susceptibility-induced distortions.

The brain extraction tool (BET) creates brain masks 
from the topup’s output b = 0 volumes [37].

Eddy tool corrected DTI volumes for susceptibility, 
eddy currents and subject movements, based on topup 
function output files, the brain mask created in the pre-
vious step and each input diffusion volume acquisition 
features.

Before the final step, the MRI-processed images were 
assessed using a quality control framework [38] to iden-
tify and possibly remove the bad quality dataset. In brief, 
quality control framework checked all participants’ topup 
and eddy functions output files, distinguishing each 

dataset quality, finally identifying those need carefully 
visually inspection. At the time of scanning, it checked 
each dataset for artifacts. No artefactual DTI data were 
detected.

Lastly, the DTIFIT toolbox fits the preprocessed images 
based on a diffusion tensor model to yield the fractional 
anisotropy (FA), mean diffusivity (MD), axial diffusivity 
(AD), and radial diffusivity (RD), distortion-corrected 
DTI volumes, brain mask previously created, b values 
and vectors files as inputs.

Hypothalamus ROI [39] were defined by an expert neu-
roradiologist (F.C.) in MNI standard space using FSLeyes 
software ​(​​​h​t​​t​p​s​​:​/​/​o​​p​e​​n​.​w​​i​n​.​​o​x​.​a​​c​.​​u​k​/​p​a​g​e​s​/​f​s​l​/​f​s​l​e​y​e​s​/​f​s​
l​e​y​e​s​/​u​s​e​r​d​o​c​/​i​n​d​e​x​.​h​t​m​l​​​​​)​. Left and right thalamic ROIs 
were defined using FSLeyes atlases and inspected by the 
same neuroradiologist (F.C.) (Fig. 1). All ROIs were regis-
tered as MRI diffusion images using algorithms embed-
ded in the FDT toolbox [40–43].

Statistical analysis
Group differences in demographic data were estimated 
using SPSS version 23 (IBM Corp., USA).

An unpaired 2-sample t-test was used to detect sig-
nificant differences in the correlations and lag values 
between the independent components for controls and 
patients [27].

A p-value of 0.05 false discovery rate (FDR) corrected 
for multiple comparisons was considered significant.

The DTI characteristics were estimated based on previ-
ously defined ROIs for each group, and their values were 
compared using an unpaired 2-sample t-test.

An additional Holm-Bonferroni correction was per-
formed to compensate for the number of ROIs; thus, the 
p-value was set to 0.01.

To search for correlations between DTI metrics, 
regional RS-fMRI network changes, and clinical features, 
the Z-max scores (voxel-wise analysis) of each IC net-
work were extracted for each participant.

A p-value of 0.01 (0.05 / 4) was chosen to compensate 
for multiple comparisons due to the number of clinical 
variables.

Results
All the participants completed the recording sessions. 
Structural brain MRI revealed no white matter lesions.

Resting-state functional connectivity
We found a difference in FC between ICs encompass-
ing interconnected areas of the SN (IC7) and left ECN 
(IC10), and in FC between ICs encompassing intercon-
nected areas of the right ECN (IC12) and DMN (IC16) 
in patients with CH compared to HCs (Figs.  2 and 3). 
The difference between IC7-IC10 (corrPosΔ = 0.1994; 
p = 0.0004) was because of a lower positive significant 

http://trendscenter.org/software/gift/
http://trendscenter.org/software/gift/
https://fsl.fmrib.ox.ac.uk/fsl
https://open.win.ox.ac.uk/pages/fsl/fsleyes/fsleyes/userdoc/index.html
https://open.win.ox.ac.uk/pages/fsl/fsleyes/fsleyes/userdoc/index.html
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correlation between the IC pairs in patients with CH. In 
contrast, the difference between IC12-IC16 was because 
of significant negative CH connectivity and a lack of 
significant negative connectivity in HCs (corrPosΔ = 
-0.1880; p = 0.0015). No significant lag differences were 
detected between the contrasts listed above (See Table 1).

No additional significant differences were detected in 
the other ICs FC between eCHs and HCs.

Diffusion tensor imaging metrics
In patients with CH, the FA value of the hypothalamus 
was lower, and the MD was higher than in HCs (p < 0.001, 
Table  2). Additionally, the FA values of the bilateral 
thalami were higher in the CH group than in HC group 
(p = 0.002, Table 3).

Correlation analyses
There were no significant correlations between DTI met-
rics and the following clinical features of patients with 

Fig. 2  Resting state functional connectivity between the salience network (IC7) and left executive control network (IC10). (A) A depiction of the two 
distinct components IC7 (hot metal scale) and IC10 (azure-blue) that were identified by independent component analysis (ICA). The functional connec-
tivity absolute value of these components was found to be reduced in patients with episodic cluster headache (eCH) as compared to healthy controls 
(HC). The process of co-registration has been applied to align all images with the MNI template space. The numerals underneath each image indicate 
the z coordinate in Talairach’s system. (B) The bar graph on the right shows the correlation between the 2 ICs in HC and eCH, at p < 0.05 FDR corrected

 

Fig. 1  Sagittal, coronal, and axial ROIs representations used to achieve DTI characteristics: hypothalamus and thalami highlighted in red
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CH: daily attack frequency, mean severity of headache 
attacks, and duration of attacks. The only correlation we 
found was that the higher the AD (R2 = 27.84%, p = 0.009) 
and RD (R2 = 30.50%, p = 0.005) of the hypothalamus in 
CH patients, the longer the history of the disease.

There were no correlations between ICs Z-score and 
DTI parameters.

Discussion
In the present study, we searched for structural and 
functional MRI abnormalities in patients with eCH who 
were not receiving prophylactic medication at the time 
of scanning. The key results of this DTI-fMRI study are 
summarized as follows:

a)	 Compared to HCs, the functional connectivity 
between the salience network and the left executive 
control network was reduced in patients with CH.

b)	 The right executive control and default mode 
network were positively connected in patients and 
negatively connected in HCs.

c)	 The FA value of the hypothalamus was significantly 
lower and the MD value was significantly higher in 
patients with CH than in HCs.

Table 1  Demographic and clinical characteristics (mean ± standard deviation) of the patients with episodic cluster headache (eCH) 
and of heathy control (HC) groups

HC (N = 20) eCH (N = 26) Statistics
Age 40.2 ± 9.2 40.3 ± 10.3 t = − 0.007, p = 0.995
Sex (M/F) (19/1) (24/2) Chi = 0.714, p = 0.599
Duration of history of eCH (years) 14.3 ± 10.96
Mean severity of headache attacks (0–10) 9.69 ± 0.67
Attacks frequency (N/day) 2.73 ± 2.01
Attacks duration (mins) 85 ± 55.7

Table 2  Diffusion tensor imaging (DTI) metrics of the 
hypothalamus of healthy controls (HC) and patients with 
episodic cluster headache (eCH). Data are expressed as 
means ± SD; * p < 0.001
DTI metrics HC (N = 20) eCH (N = 26)
Fractional anisotropy 0.410 ± 7.82E-2 0.223 ± 8.5E-2 *
Mean diffusivity 9.41E-4 ± 1.64E-4 1.949E-3 ± 6.26E-4 *
Axial diffusivity 1.27E-3 ± 1.61E-4 1.502E-3 ± 4.60E-4
Radial diffusivity 7.76E-4 ± 1.67E-4 1.027E-3 ± 4.37E-4

Table 3  Diffusion tensor imaging (DTI) metrics of bilateral 
thalami of healthy controls (HC) and in patients with episodic 
cluster headache (eCH). Data are expressed as means ± SD; * 
p < = 0.002
DTI metrics HC (N = 20) eCH (N = 26)
Right
Fractional anisotropy 0.327 ± 3.5E-2 0.361 ± 3.417E-2 *
Mean diffusivity 1.073E-3 ± 2.46E-4 1.060E-3 ± 1.74E-4
Axial diffusivity 1.383E-3 ± 2.59E-4 1.436E-3 ± 2.19E-4
Radial diffusivity 9.18E-4 ± 2.41E-4 9.39E-4 ± 2.00E-4
Left
Fractional anisotropy 0.335 ± 2.49E-2 0.366 ± 3.89E-2 *
Mean diffusivity 9.78E-4 ± 1.72E-4 1.040E-3 ± 1.59E-4
Axial diffusivity 1.28E-3 ± 1.90E-4 1.376E-3 ± 2.07E-4
Radial diffusivity 8.27E-4 ± 1.64E-4 8.83E-4 ± 1.72E-4

Fig. 3  Resting state functional connectivity between the right executive control network (IC12) and default-mode network (IC16). (A) A depiction of the 
two distinct components IC12 (hot metal scale) and IC16 (azure-blue) that were identified by independent component analysis (ICA). The functional con-
nectivity absolute value of these components was found to be reduced in patients with episodic cluster headache (eCH) as compared to healthy controls 
(HC). The process of co-registration has been applied to align all images with the MNI template space. The numerals underneath each image indicate 
the z coordinate in Talairach’s system. (B) The bar graph on the right shows the correlation between the 2 ICs in HC and eCH, at p < 0.05 FDR corrected
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d)	 The FA values of the bilateral thalami were higher in 
patients with CH than in HCs.

e)	 A longer disease history was associated with higher 
AD and RD metrics in the hypothalamus.

Microstructural alterations
Using 1.5T DTI and tract-based spatial statistics, signifi-
cant differences in white matter diffusivity metrics (axial, 
radial, and mean) were found in the parahippocampal 
gyrus, amygdala, insula, frontal subgyral area, extra-
nuclear area of the putamen, and medial frontal gyrus 
areas consistently during the in-bout and out-of-bout 
periods in 17 patients with CH compared with HCs [6]. 
The ipsilateral hypothalamus was highly connected to 
the ipsilateral medial frontal gyrus and the contralateral 
parahippocampal gyrus [6]. Analysis of whole-head 1.5T 
MRI DTI in tract-based spatial statistics in a variable 
number of patients (from 7 to 22) revealed diffuse white 
matter microstructure plastic changes in patients with 
CH [7, 44, 45]. In seven male patients with episodic CH, 
significant microstructural white matter tissue changes 
were detected in the brainstem; frontal, temporal, and 
occipital lobes; internal capsule; and right thalamus and 
cerebellum bilaterally [44]. This widespread involve-
ment of the white matter regions in CH was confirmed 
by Szabo et al., who found higher mean, axial, and per-
pendicular diffusivity in the frontal, parietal, temporal, 
and occipital lobes; lower FA in the corpus callosum; and 
some frontal and parietal white matter tracts mainly con-
tralateral to the pain [45]. The mean FA of the right amyg-
dala, mean AD and MD of the right caudate nucleus, and 
RD of the right pallidum were higher, and the mean FA 
of the right pallidum was lower in a DTI study in patients 
with CH than in HC [7]. None of the previous studies 
have included the hypothalamic ROI in their analysis. 
Here, we found a lower FA value and a higher MD value 
in the hypothalamus of patients with CH than in HCs. 
These altered values can support the hypothesis that the 
hypothalamus plays a role in the pathogenesis of CH. 
Within white matter, diffusion is more likely to occur in 
a direction that aligns with the orientation of the fibers. 
This emphasizes that the main factors contributing to an 
increase in FA are a decrease in RD and/or an increase 
in AD [46]. This DTI technique is valuable for identifying 
both large brain white matter pathways and white matter 
tracts within gray matter nuclei, such as the hypothala-
mus and thalamus [47]. These brain structures consist 
of separate nuclei bound together by highly anisotropic 
myelinated fibers [48].

Nevertheless, it must be pointed out that myelin 
accounts for merely 20% of anisotropy, as variations in 
the volume of the axonal membrane and changes in the 
structure of glial cells appear to be additional factors in 
the development of MD and FA, respectively [46, 49]. 

Furthermore, in the gray matter, the primary factors 
contributing to FA are the abundance of neuronal con-
nections through the branching and crossing of dendritic 
trees, number of local circuits, and abundance of axonal 
membranes [49]. Therefore, the present diffusivity pat-
tern of decreased FA and increased MD compared with 
those of HCs may reflect the loss of preferential direction 
of the fibers in combination with increased cell swelling. 
From a neurophysiological perspective, this pattern may 
coincide with an increased neuronal electrical response 
with a consequent increase in neuronal connections and 
dendritic arborization, resulting in an increased number 
of local circuits [49, 50]. Interestingly, a longer history of 
the disease was associated with higher AD and RD val-
ues in the hypothalamus. However, as both metrics in the 
eCH group were within normal limits, we hypothesized 
that disease history may only marginally influence micro-
structural changes in the hypothalamus.

Contrary to what we found in the hypothalamus, the 
FA of the bilateral thalami increased in the presence of 
normal MD, AD, and RD in the patients compared to 
HCs. From a microstructural perspective, these findings 
may indicate an increase in the directional arrangement 
while maintaining the same neuronal and glial cell size 
and density. Based on these results, we argue that the 
thalamus also plays a role in CH pathophysiology, regard-
less of the side of pain. Given the thalamus’s established 
role in both descending and ascending trigeminal pain 
processing and autonomic system regulation, we can only 
speculate that the increased directionality of the thalamic 
fibers may result from recurrent headaches amplifying 
pain transmission in our patients with eCH. The recent 
finding in a cohort of eCH of diminished thalamic-to-SN 
FC irrespective of headache lateralization, may corrobo-
rate our hypothesis, as an anomalous involvement of the 
thalamus in pain processing could impair saliency detec-
tion mechanisms in the brain [16], specifically its ability 
to switch between systems engaged in processing exog-
enous and self-relevant information [51]. Further studies 
of functional connectivity are required to elucidate this 
point.

Between networks connectivity
Previous investigations using resting-state functional 
MRI have identified intrinsic changes in the connectiv-
ity of brain networks in individuals with CH. Patients 
have FC alterations in various brain networks, including 
the temporal, frontal, salience, default mode, sensorimo-
tor, dorsal attention, and visual networks, regardless of 
whether they were in or out of the bouts [52]. Decreased 
functional coactivation between the hypothalamus ipsi-
lateral and contralateral to the headache side and the 
SN indicated that dysfunction in the hypothalamus on 
the same side as the headache is insufficient to explain 
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all abnormalities associated with CH [12]. A combined 
voxel-based morphometry and functional MRI study 
showed that in patients with CH, compared to migraine 
without aura patients and HCs, decreased regional grey 
matter volume in the frontal cortex and higher FC in the 
prefrontal cortex, brain area belonging to the ECN, and 
in the DMN were observed [53].

In humans, the SN detects and filters salient environ-
mental stimuli and regulates attention and behavior in 
connection with the neurolimbic system. In healthy indi-
viduals, the SN switches between the DMN, which is 
active when the brain is at rest and not focused on the 
outside world, and the ECN, a task-oriented brain net-
work, during goal-directed tasks [54, 55]. The SN, which 
includes the dorsal anterior cingulate cortex and bilat-
eral anterior insula/frontal operculum, may be essential 
for emotions, pain, and interoception. The ACC of the 
SN has a vital role in affective and attentional modula-
tion of pain perception, as well as in antinociception. 
Analysis of extensive brain networks led to the hypoth-
esis that these three principal networks (SN, ECN, and 
DMN) constitute the ultimate common channel through 
which various internal or environmental disturbances 
may affect the brain [56]. Deviant connections within 
and among these brain networks have been shown to 
promote the onset of neuropsychiatric disorders [57] 
and have been further applied to elucidate the chronic-
ity of pain [58]. By exploring between independent net-
works connectivity, we found reduced FC between the 
SN and left ECN and the presence of an unphysiologi-
cal co-activation and increased FC between the DMN 
and right ECN in patients compared with HCs. Based on 
prior results acquired from healthy individuals, our find-
ings in patients with CH may be a functional correlate 
of the patients’ SN being unable to switch between the 
DMN and ECN during demanding cognitive tasks, such 
as integration of attentional, sensory and affective prob-
lems related to recurring headaches. These problems may 
contribute significantly to morbidity, resulting in height-
ened functional disability and diminished quality of life. 
Additional research is required to confirm whether this 
connectivity pattern is a physiological mechanism by 
which the brain attempts to cognitively modify the per-
ceptions and neural responses triggered by the sensation 
of pain [59]. Typically, this neurological process includes 
increased natural pain-relieving activity in the descend-
ing pain-modulatory system (such as the prefrontal cor-
tex belonging to the ECN) and reduced activity in regions 
that contribute to pain [60].

Limitations
Our study has several limitations. First, cross-sectional 
fMRI studies with a relatively small cohort of sub-
jects restrict their ability to draw conclusions regarding 

causality. Furthermore, as all patients were in the bout at 
the time of scanning, the data did not offer any insight 
into the brain processes during the period of remission. 
However, disturbances in the connectivity of large-scale 
brain networks have consistently been detected both 
in and out of bouts in individuals with eCH. Second, a 
limitation of the current analysis is its failure to account 
for headache laterality, given that CH is characterized 
by strictly unilateral pain. Third, this a cross-sectional 
study on a relatively small cohort of subjects and with 
retrospective collection of clinical data. Further research 
employing the same techniques in a larger cohort of 
subjects is required to control for the laterality of pain, 
track patients over time, and investigate individuals with 
chronic CH, where a more significant impact on the mid-
brain has been suggested [3].

Conclusions
In our study, we emphasized how the hypothalamic 
microstructure is altered during the in-bout period 
outside of attacks. We also highlighted the presence 
of altered bilateral thalamic metric values and demon-
strated the role of the thalamus in the pathogenesis of 
CH attacks. In addition, we demonstrated that altered 
connectivity in networks that differentiate between 
patients with CH and HCs may be related to the SN and 
not the switching ability between internalizing the DMN 
and externalizing the ECN during pain. Further stud-
ies are needed to determine whether these functional 
abnormalities are related to the constant activity of the 
hypothalamus or to stable, genetically determined, dis-
ease-predisposing anomalies.
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