
R E V I E W Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​
v​e​c​​o​m​m​​o​n​s​.​​o​r​​g​/​l​​i​c​e​​n​s​e​s​​/​b​​y​-​n​c​-​n​d​/​4​.​0​/.

Krivoshein et al. The Journal of Headache and Pain           (2025) 26:40 
https://doi.org/10.1186/s10194-025-01966-9

The Journal of Headache 
and Pain

*Correspondence:
Arn M.J.M. van den Maagdenberg
a.m.j.m.van_den_maagdenberg@lumc.nl

Full list of author information is available at the end of the article

Abstract
Transient Receptor Potential Melastatin 3 (TRPM3) channels are Ca2+ permeable ion channels that act as polymodal 
sensors of mechanical, thermal, and various chemical stimuli. TRPM3 channels are highly expressed in the 
trigeminovascular system, including trigeminal neurons and the vasculature. Their presence in dural afferents 
suggests that they are potential triggers of migraine pain, which is originating from the meningeal area. This area 
is densely innervated by autonomous and trigeminal nerves that contain the major migraine mediator calcitonin 
gene-related peptide (CGRP) in peptidergic nerve fibers. Co-expression of TRPM3 channels and CGRP receptors in 
meningeal nerves suggests a potential interplay between both signalling systems. Compared to other members 
of the TRP family, TRPM3 channels have a high sensitivity to sex hormones and to the endogenous neurosteroid 
pregnenolone sulfate (PregS). The predominantly female sex hormones estrogen and progesterone, of which 
the levels drop during menses, act as natural inhibitors of TRPM3 channels, while PregS is a known endogenous 
agonist of these channels. A decrease in sex hormone levels has also been suggested as trigger for attacks of 
menstrually-related migraine. Notably, there is a remarkable sex difference in TRPM3-mediated effects in trigeminal 
nociceptive signalling and the vasculature. In line with this, the relaxation of human isolated meningeal arteries 
induced by the activation of TRPM3 channels is greater in females. Additionally, the sex-dependent vasodilatory 
responses to CGRP in meningeal arteries seem to be influenced by age-related hormonal changes, which could 
contribute to sex differences in migraine pathology. Consistent with these observations, activation of TRPM3 
channels triggers nociceptive sensory firing much more prominently in female than male mouse meninges, 
suggesting that pain processing in female patients with migraine may differ. Overall, the combined TRPM3-related 
neuronal and vascular mechanisms could provide a possible explanation for the higher prevalence and even the 
more severe quality of migraine attacks in females. This narrative review summarizes recent data on the sex-
dependent roles of TRPM3 channels in migraine pathophysiology, the potential interplay between TRPM3 and 
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Introduction
Migraine is a complex neurovascular brain disorder char-
acterised by recurrent attacks of often unilateral, throb-
bing headache with associated neurological symptoms, 
such as an increased sensitivity to light and sound, nau-
sea and vomiting. Migraine affects ∼ 15% of the general 
population world-wide [1, 2]. Up to one-third of patients 
also experience auras that are believed to be caused 
by waves of cortical spreading depolarization (CSD); 
hence there is a distinction between migraine with and 
migraine without aura [3]. Migraine is three times more 
prevalent in women than in men and it is now well recog-
nized that sex hormones play a role in this sex difference 
[4, 5]. Notably, attacks in women are more often associ-
ated with a higher intensity and longer duration than in 
men, and, in women, are more frequently accompanied 
by associated symptoms [6, 7]. Moreover, in women with 
migraine, attacks are more likely to occur during the per-
imenstrual period, hence labelled as menstrual migraine 
[8]. As a consequence, migraine is a very disabling dis-
ease [9] with a higher disability in women [10]; especially 
in women between age 15 and 49 years [11].

Different mechanisms have been proposed to explain 
the sex difference observed in migraine [12–14]. Among 
these, the modulatory role of the sex hormonal milieu 
on peripheral sensory afferents and the surrounding 
vasculature is particularly prevailing [15, 16]. Sensitiza-
tion and activation of sensory nerve endings in the dura 
mater have long been recognized as major factors con-
tributing to the generation of migraine headaches [17–
19]. This key mechanism is believed to be mediated by 
increased activity of pro-nociceptive ion channels in tri-
geminal afferents that are triggered by the release of main 
migraine mediator neuropeptide calcitonin gene-related 
peptide (CGRP) [2, 20, 21] or, in patients with migraine 
with aura, also by CSD [22]. Notably, CGRP expression 
was increased for 24  h in rats that underwent multiple 
CSD events [23]. Notwithstanding, the relevance of CSD 
in activating headache mechanisms has been debated 
[24], regardless of accumulating evidence for such a 
role, either through direct neuronal activation of the tri-
geminovascular system [25] or, as was shown recently, 
through the flow of cerebrospinal fluid (CSF)-borne sol-
utes released after CSD, which carry signals from the 
cortex to cell bodies in the trigeminal ganglia (TG) [26] 
thereby activating peripheral nociceptors. Importantly, 
activation and sensitization of peripheral ion nociceptors 
occurs in a sexually dimorphic manner that is conserved 
across species and likely relevant to a variety of pain 

conditions in humans [27]. For instance, transcriptome 
analyses revealed sex differences in RNA expression, 
likely relevant to the function of sensory nociceptors, in 
dorsal root ganglia (DRG) of mice [28, 29] and humans 
[30]. Among the most intriguing findings is the observed 
sexual dimorphism at the transcript level of CGRP with 
a higher expression in females in a DRG subpopulation 
[31]. Sexual dimorphism in gene expression in human 
DRG was also shown for non-neuronal astrocytes [32] 
that also have a role in migraine pathophysiology [33]. 
Current evidence suggests that pro-nociceptive ion chan-
nels and mechanisms of their activation and sensitization 
in peripheral tissue are key events in generating migraine 
pain, and that these differ between males and females.

In this review, we focus on transient receptor poten-
tial melastatin 3 (TRPM3) ion channels as potential trig-
gers of nociception in migraine. TRPM3 channels are 
expressed in a variety of cell types and tissues in various 
species, including humans, in both the central nervous 
system (CNS) and the peripheral nervous system (PNS). 
In the PNS they are predominantly expressed in TG and 
DRG sensory neurons [34–36] where they detect temper-
ature, mechanical and chemical stimuli and transmit this 
information to the CNS [37]. TRPM3 channels belong to 
the melastatin subfamily within the mammalian transient 
receptor potential (TRP) superfamily of channels [38]. 
Among the TRP channels, TRPM3 channels have gained 
particular attention in the migraine field, as they: (1) are 
considered a promising drug target for treating chronic 
pain [39], as well as migraine [40]; (2) were shown to act 
in peripheral sensitization [41]; and (3) cation-selective 
channels known to be directly activated by sex hormones 
[42] and because of this have been implicated in sex-
related differences in migraine pain [40, 43].

The importance of TRPM3 channels in the CNS has 
been recognized since the first functional analyses of 
the channels [44, 45]. Their implication for brain physi-
ology, not only in the healthy brain [46] but also in the 
context of disease-causing mutations in the TRPM3 gene 
[47, 48], have been the topic of recent reviews. Hence, we 
will here focus mainly on the role of TRPM3 channels 
in the nociceptive system in the context of migraine. To 
this end, we will summarize findings on the functional 
roles of TRPM3 channels in physiology, the mechanisms 
by which they are activated (for a summary, see Fig. 1), 
their direct interaction and modulation by sex hormones 
and CGRP, and highlight possibilities for pharmacologi-
cal intervention in the context of migraine. Of note, given 
the specific effects of TRPM3 channels in females, their 

CGRP signalling, and highlights the prospects for translational therapies targeting TRPM3 channels, which may be 
of particular relevance for women with migraine.
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activity may, at least in part, explain the higher preva-
lence and more severe phenotype of migraine in women, 
potentially paving the way for more tailored women-spe-
cific migraine therapies.

Principle structure and isoforms of TRPM3 
channels
TRPM3 channels are encoded by the TRPM3 gene that 
consists of 24 exons and produces a protein of 1555 
amino acids in humans [44]. TRPM3 channels have a 
transmembrane topology composed of four subunits 
arranged around a central pore. Being part of the melas-
tatin subfamily, the N-terminus lacks ankyrin repeats 
but instead contains an extended TRPM homology 
domain. Each subunit consists of six transmembrane 
segments (S1-S6) connected by extracellular and intra-
cellular loops. In contrast to other TRP channels, the 
transmembrane domain of TRPM3 channels is divided 
into two functional cation-conducting pores: one non-
canonical pore is formed by segments S1-S4, analo-
gous to the structure of the voltage-sensor domain of 
voltage-gated ion channels, and one central canonical 
pore formed by segments S5 and S6 (interconnected by 
a hydrophobic pore-forming loop). The length of this 

pore-forming loop determines the TRPM3 isoform type 
and thereby most of the physiological and pharmacologi-
cal properties of the channel [49]. Notably, the TRPM3 
gene is subject to profound alternative splicing resulting 
in a considerable number of isoforms [50–52]. The iso-
forms produced by the mouse Trpm3 gene are classified 
in three groups (TRPM3α, TRPM3β and TRPM3γ) [53] 
of which TRPM3α1 and TRPM3α2 functionally are the 
best characterized [54]. TRPM3α1 has 13 amino acids 
inserted in the pore-forming loop (“long pore variant”) 
compared to TRPM3α2–α6 (“short pore variants”) [54]. 
This variation gives isoforms not only distinct pharmaco-
logical and physiological properties, but is also associated 
with different expression profiles. For example, whereas 
TRPM3α2 is predominantly expressed in the PNS, 
especially in DRG neurons, and is activated by PregS, 
TRPM3α1 is more abundantly expressed in the CNS and 
insensitive to PregS but instead sensitive to clotrimazole 
[54]. In fact, most of the TRPM3 isoforms are differen-
tially expressed in the CNS and PNS, but since they have 
not yet been functionally characterized their relative role 
in migraine pathophysiology remains a mystery.

Fig. 1  Modulation of TRPM3 channels. TRPM3 channels can be modulated by various mechanisms, either they activate or inhibit TRPM3 channel activity 
(only the mechanisms relevant to migraine pathophysiology are mentioned). One modulation is steroid-mediated activation, primarily via pregnenolone 
sulfate (PregS), which is synthesized from pregnenolone, itself derived from cholesterol. Other activation mechanisms include mechanical activation 
due to membrane tension and temperature-dependent activation when temperatures exceed 37 °C, and intracellular lipid-signalling, particularly via 
phosphatidylinositol 4,5-bisphosphate (PIP2). Upon activation, TRPM3 channels increase the level of intracellular Ca²⁺ (iCa²⁺), triggering the release of 
calcitonin gene-related peptide (CGRP) and glutamate (Glut), both of which are key signalling molecules involved in migraine nociception. Enhanced 
Ca²⁺ influx initiates Ca²⁺-dependent mechanisms that increase neuronal depolarization and excitation ultimately promoting nociceptive signalling and 
vascular reactivity. TRPM3 channel activity can be inhibited by high intracellular Mg²⁺ (iMg²⁺)-dependent mechanisms, while low intracellular Mg²⁺ levels 
facilitate channel activation. This activation of TRPM3 channels influences the release of CGRP, contributing to nociceptive signalling. Abbreviations: 
TRPM3, Transient Receptor Potential Melastatin 3; CGRP, Calcitonin gene-related peptide; Glut, glutamate; PregS, Pregnenolone sulfate; iCa²⁺, intracellular 
calcium; iMg²⁺, intracellular magnesium; PIP2, Phosphatidylinositol 4,5-bisphosphate; DAG, Diacylglycerol; IP3, Inositol 1,4,5-trisphosphate; ATP, Adenosine 
triphosphate; AC, Adenylyl cyclase; cAMP, Cyclic adenosine monophosphate; PKA, Protein kinase A; PLC, Phospholipase. Created with BioRender.com
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TRPM3 channels and migraine
Expression of TRPM3 channels within the migraine 
nociceptive system
The trigeminovascular system is considered the pri-
mary anatomical and physiological substrate of migraine 
nociception [1, 2]. A main component of the system 
is the pseudo-unipolar sensory neurons that primar-
ily originate from the TG and upper cervical DRG. The 
peripheral nerve fiber projections innervate the cranial 
meninges and surrounding blood vessels, while the cen-
tral fiber projections form synapses in the trigeminal cau-
dal nucleus of the brainstem, as well as in the upper two 
cervical divisions, collectively known as the trigemino-
cervical complex (TCC). Activation and sensitization of 
TG and DRG fibers, triggered by mechanical, chemical or 
temperature changes, release vasoactive peptides, induc-
ing local inflammatory reactions are considered relevant 
to migraine pain initiation [1]. Subsequently, through 
activation and sensitization of second-order neurons in 
the TCC, information reaches third-order neurons in 
the thalamus and ultimately the somatosensory cortex 
[55]. However, the exact molecular mechanisms under-
lying this sensitization and activation of peripheral pri-
mary afferents in the context of migraine pain remain an 
enigma.

A growing body of research suggests that TRP channels 
are particularly well-suited for encoding and transduc-
ing information of noxious stimuli from primary TG and 
DRG sensory afferents to other parts of the brain. Recent 
studies in mice revealed that the sensing of noxious stim-
uli depends on three types of TRP channels: transient 
receptor potential vanilloid 1 (TRPV1), transient recep-
tor potential ankyrin 1 (TRPA1), and TRPM3 [37, 56]. 
Functional expression of TRPM3 channels in small-diam-
eter of DRG sensory neurons (in ∼ 78% of neurons) and 
in TG sensory neurons (in ∼ 82%) of adult mice was, for 
the first time, demonstrated by Vriens et al. [57]. Direct 
evidence of functional expression of TRPM3 channels 
in human DRG (in ∼ 52%) and stem cell-derived sensory 
neurons (in ∼ 58%) comes from whole-cell patch-clamp 
recordings and intracellular calcium measurements, 
reported by Vangeel et al. [58]. More recently, electro-
physiological recordings of nociceptive signals from 
peripheral parts of TG meningeal afferents, which con-
tain thinly myelinated Aδ and unmyelinated capsaicin-
responsive C fibers, in isolated hemiskulls, revealed proof 
of functional expression of TRPM3 channels in ∼ 98% of 
fibers in female mice and ∼ 80% of fibers in male mice as 
well [41]. Of note, activation and sensitization of these 
fibers seems of particular relevance to the generation 
of migraine pain [2, 59]. Most of the TRPM3-express-
ing human sensory neurons also respond to capsaicin, 
indicating their co-expression with TRPV1 channels, 
the main pain transducers. Using cluster analysis of the 

nociceptive signals recorded from mouse TG meningeal 
fibers, Krivoshein et al. [41] showed co-activation of the 
same fibers in response to TRPM3 and TRPV1 channel 
agonists, suggesting that ‘superreactive’ fibers detect and 
integrate multiple TRPM3- and TRPV1-specific stimuli, 
transducing them into nociceptive activation. Previously, 
trichrome immunofluorescence of various rat ganglia 
preparations showed co-expression of TRPM3, TRPV1 
and CGRP, albeit with some variability that depends on 
sensory ganglion location [60]. Notably, some 70% of 
TRPM3-immunoreactive neurons in TG also had TRPV1 
immunoreactivity, whereas almost half of the TRPM3-
immunoreactive neurons exhibited CGRP immuno-
reactivity. With respect to their respective subcellular 
localization, as revealed by high-magnification confocal 
microscopy, in rat sensory ganglia, TRPM3 channels are 
localised at the periphery (submembrane) of a subset of 
cell bodies, which is markedly different from the localiza-
tion of other TRP channels (TRPV1 and TRPA1), present 
throughout the cytoplasm of the cell body [61].

In addition to neurons of the trigeminovascular system, 
also cerebral and meningeal blood vessels play an impor-
tant role in migraine pathophysiology, likely through 
vasodilatation by triggering neighboring nociceptors, 
thereby leading to a further release of inflammatory neu-
ropeptides thereby fuelling “the migraine pain cycle” [62]. 
According to one study [63], TRPM3 channels are pres-
ent in contractile and proliferating vascular smooth mus-
cle cells, as well as in the adventitia layer of blood vessels, 
resulting in contraction of vessels upon activation of 
these channels. In contrast, another study [64] suggested 
that the expression of TRPM3 channels is restricted to 
the endings of neurons making contact with blood ves-
sels, with their activation leading to vasodilation rather 
than contraction. Recently, the controversy was further 
addressed, demonstrating that functional TRPM3 chan-
nels are present both in human isolated dermal arteries 
(mainly in smooth muscle cells and to lesser extent in 
endothelial cells) and perivascular sensory nerves inner-
vating the adventitial layer of arteries. Most notably in 
the context of this review, TRPM3 channel activation by 
pregnenolone sulfate (PregS) induces a release of CGRP. 
Paradoxically, the functional vasodilatory response to 
PregS was not affected by CGRP receptor antagonist 
olcegepant, suggesting that this functional response is 
independent from CGRP [65].

Functional properties of TRPM3 channels and the relation 
to migraine pathophysiology
Ca2+ permeability and sensitivity to Mg2+ of TRPM3 channels
Originally, TRPM3 channels were identified as constitu-
tively permeable to Ca2+ ions, as demonstrated by in vitro 
investigation [45]. Further electrophysiological analysis 
revealed that TRPM3α2 (the most extensively studied 
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isoform) has ten-times greater permeability to Ca2+ 
(and other divalent) cations than the TRPM3α1 isoform, 
which is more permeable to monovalent ions [66]. Thus, 
activation of isoform-specific TRPM3 channels could 
mediate not only depolarization, leading to spike genera-
tion in neuronal cells, but also to variable levels of Ca2+ 
influx in various types of cells. Notably, both neuronal 
depolarization and increased Ca2+ levels in trigeminal 
neurons and vascular cells are deemed critical mecha-
nisms for the activation and sensitization of neurons that 
may directly or indirectly modulate vascular tone rel-
evant to migraine pathophysiology [64]. Most relevant in 
the context of this review, however, is that transient rises 
in Ca2+ serve as triggering factor for the release of CGRP 
and glutamate from peripheral and central nerve endings 
of trigeminal neurons [21, 67]. Also of relevance is that 
a sustained elevated level of Ca2+, as often found in can-
cer, typically results in hyperalgesia and headache [68]. 
Finally, in particular, elevated levels of extracellular K+ 
observed during CSDs, along with Na+ and Ca2+ influx 
and glutamate release from central neurons, are believed 
to cause dendritic depolarization in a non-synaptic man-
ner. TRPM3 channels are known to be inhibited by high 
levels and activated by low levels of intracellular Mg2+ 
[50] (see also Fig. 1). Clinical and preclinical studies have 
found low Mg2+ levels in blood and CSF of migraine 
patients, suggesting that they may benefit from correct-
ing this deficiency [69]. Low Mg2+ levels in migraine 
patients may increase TRPM3 channel activity as a result 
of reduced inhibition, leading to enhanced release of 
CGRP, potentially exacerbating migraine symptoms. 
However, the involvement of TRPM3 channels in Mg2+ 
signalling in the context of migraine has not been inves-
tigated in detail. Therefore, while the precise mechanisms 
remain unclear, Mg2+ supplementation appears beneficial 
as a strategy for migraine management, possibly due to 
TPRM3’s sensitivity to this ion and its potential involve-
ment in migraine pain generation.

Lipid signalling modulates activity of TRPM3 channels
TRPM3 channel activity, similar to the activity of various 
other members of the TRPM subfamily, strongly depends 
on the availability of membrane-signalling lipids, such as 
phosphatidylinositol 4,5-bisphosphate (PIP2) [70] and 
phosphatidylinositol (3,4,5)-trisphosphate (PIP3) [71, 72] 
with more potential enhancement by the latter (see also 
Fig. 1). PIP2 was shown to interact with TRPM3 channels 
through amino acid residues in the S1-S4 and pre-S1 seg-
ments [73], that overlap with the N-terminal calmodulin 
binding domains [74]. Of note, phospholipase C (PLC) 
enzyme activity, which is responsible for catalysing the 
hydrolysis of PIP2, was found increased in the CSF of 
patients with migraine without aura in the ictal phase 
[75], and more so in patients with more comorbidities 

[76]. Certainly, the interaction of CGRP with its receptor 
not only activates protein kinase A (PKA) through Gβγ 
subunit activation and increased levels of cAMP [77] but 
also stimulates PLC activity [78]. Therefore, there is the 
rationale for considering modulation of phosphoinositide 
metabolism, specifically the rapid depletion of PIP2 by 
PLC activation, which quickly suppresses TRPM3 activity 
[79], as potential therapeutic strategy for migraine.

Plasma membrane microdomains, known as lipid rafts, 
which are enriched with cholesterol and sphingolipids, 
have been identified crucial for TRP channel functioning 
[80]. In vitro investigation revealed that disrupting lipid 
rafts with, for instance, methyl-β-cyclodextrin (MCD) 
reduced the agonist-induced activation of TRP chan-
nels, such as TRPV1, TRPA1, and TRPM8, in trigeminal 
neurons, but this, surprisingly, had no effect on TRPM3 
channel activation [81]. Carboxamido-steroid compound 
(C1), which is used for lipid raft disintegration by choles-
terol depletion [82], resulted in a decreased activation of 
TRPM3 channels in trigeminal neurons [81, 83]. A recent 
in vivo animal study demonstrated that disrupting lipid 
rafts through cholesterol depletion via MCD or C1 had 
an anti-nociceptive effect on icilin-induced nocifensive 
behavior via TRPM3 channels [84], suggesting a periph-
eral analgesic effect of MCD. Similar to a possibly benefi-
cial effect of dietary intake of Mg2+, albeit mostly through 
inhibition of NMDA receptors [85] and not so much 
TRPM3 channel modulation, also dietary intake of n-3 
long-chain polyunsaturated fatty acids, which has been 
shown to positively affect lipid raft aging and changing 
neuronal plasticity as shown for hippocampus [86], may 
be considered as possible migraine therapeutic and was 
shown to have at least some efficacy in patients [87].

There are also endogenous agonists of TRPM3. Fore-
most, a cholesterol derivative, pregnenolone, increases 
TRPM3 activity [88]. Addition of a sulfate group, result-
ing in PregS, significantly enhances TRPM3 activator 
potency [89]. Since PregS is a direct precursor of various 
sex hormones it likely plays a relevant role in the TRPM3-
related sex difference seen in a migraine context. Also 
sphingolipids, including D-erythro-sphingosine, can act 
as TRPM3 channel agonist [90]. Sphingolipids have been 
implicated in central sensitization in chronic migraine 
models [91–93]. For example, blockage of sphingosine 
receptors alleviated central sensitization and inhibited 
microglia activity in a mouse model for chronic migraine, 
in which nitroglycerin was repeatedly administered via 
intraperitoneal injection [93].

Mechanical sensitivity of TRPM3 channels and mechanical 
pain in migraine
Mechanical pain — more specifically allodynia, mechani-
cal hyperalgesia, and pulsating pain — is a major attribu-
tor of migraine pathophysiology [94]. TRPM3 channels 
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were shown to play a role in mechanical sensitivity (see 
also Fig. 1), as was first evidenced by Ca2+ entry through 
TRPM3-expressing HEK293 cells following exposure 
of the cells to a hypotonic solution [45], even though 
Piezo channels are now considered the most specialized 
sensors of mechanical stimuli [95]. Although a role of 
TRPM3 channels as mechanotransducers based on the 
experiments with hypotonic stimuli has been debated 
[46], recent studies with distension of afferent nerves 
revealed clear TRPM3 mechanosensitive features [96, 
97]. Moreover, a contribution of TRPM3 channels to 
mechanical hypersensitivity (and allodynia) was reported 
in various pathological pain conditions [98–101]. Finally, 
TRPM3 channels are also involved in mechanosensing in 
vascular smooth muscle cells and aortic contraction [63] 
and in sinoatrial and atrioventricular nodes that are sen-
sitive to physiochemical stimuli [102]. The observation 
that TRPM3, TRPV1 and mechanosensitive Piezo chan-
nels are co-localized in the same nerve fiber [41] again 
suggests that such fibers could serve as ‘supermechano-
sensitive nociceptors’ in the context of mechanical pain 
in migraine.

Thermal sensitivity of TRPM3 channels
Thermal stimuli, likely given their important biologi-
cal role in survival, are recognized by several special-
ized membrane receptors, primarily from the TRP 
family, such as TRPV1, TRPA1, TRPM3 and TRPM8 
[37]. Among them, TRPM3 channels are specialized 
for the detection of painful temperatures [57] (see also 
Fig. 1). For instance, it was shown that Trpm3 knockout 
(Trpm3−/−) mice exhibit partial, but significant, defi-
cits in response to noxious heat while they showed no 
deficits to noxious cold. In the same study it was dem-
onstrated that Trpm3−/− mice failed to develop inflam-
matory heat hyperalgesia following local injection of 
complete Freund’s adjuvant. Paricio-Montesinos et al. 
[103] showed in TRPV1, TRPM3 and TRPA1 triple 
knockout mice, a complete loss of responses to noxious 
heat stimuli in heat sensitivity of Aδ and C fibers. There-
fore, it was suggested that TRPM3 channels are predomi-
nantly located on primary sensory neurons of DRG and 
TG that play a key role in noxious heat sensation trans-
mitting nociceptive signals to the cortex but that they are 
dispensable for warm sensing. Of interest to migraine, 
extracranial arteries and myofascial structures, inner-
vated by unmyelinated TG nerve fibers, contain various 
neuropeptides, such as CGRP, which are released dur-
ing migraine attacks [104]. One can, therefore, at least 
speculate that middle meningeal artery dilation, which 
is involved in triggering migraine attacks, increases the 
temperature in the head region supplied of blood by 
that vessel. In this context it is noteworthy that a small 
asymmetry in temperature, particularly in the frontal 

and temporal regions of the pain side, was observed in 
patients with unilateral headaches [105]. One can also 
hypothesize that the action of heat- and mechanosensi-
tive TRPM3 channels might reflect some neurochemical 
imbalance and that the resulting vasodilation of facial 
microcirculation leads to nociceptive heat sensations 
and the transmission of pain signals. Since proinflam-
matory compounds can change the threshold tempera-
ture of TRPV1 channels [106], the threshold may also be 
reduced for TRPM3 receptors expressed in sensitized tri-
geminal neurons.

TRPM3 channels modulation by sex steroid hormones
Since long, have TRPM3 channels been shown to be 
ionotropic steroid receptors that are activated by natu-
ral PregS [88] (see also Fig. 1). Because of the negatively 
charged sulfate group, PregS is highly lipophobic and 
functions as a membrane-impermeable ligand, only 
activating the channel when applied to the extracellular 
side, indicating that the steroid-binding site of TRPM3 is 
located extracellularly [88]. Notably, at a concentration 
in the range found in blood, PregS in mice evokes much 
stronger responses at normal body temperature (37  °C) 
than at room temperature, in line with PregS acting as 
endogenous agonist of TRPM3 channels [57]. Moreover, 
Wagner et al. [88] showed that other endogenous sub-
stances closely related to pregnenolone, such as dehydro-
epiandrosterone (DHEA) and DHEA-sulfate (DHEAS), 
also can activate TRPM3 at room temperature. Taken 
together, this suggests that, in vivo, TRPM3 channels may 
be activated when levels of these endogenous substances 
are elevated. Later, Majeed et al. [107] found the oppo-
site effect on TRPM3 channel activation for the female 
sex hormone progesterone, which they showed to inhibit 
responses to PregS (Fig.  2). Inhibition of TRPM3 chan-
nels by progesterone was independent of any competition 
by an exogenous agonist, so acted as a mode-indepen-
dent inhibitor, although not through classical progester-
one receptors. The authors observed that pre-treatment 
with progesterone reduced PregS-evoked Ca2+ influx in 
human vascular smooth muscle cells, however, this did 
not inhibit PregS-evoked currents in granulosa cells iso-
lated from bovine ovarian follicles. In fact, metabolites of 
progesterone (i.e., pregnanolone (5β), allopregnanolone 
(5α), 17-hydroxy progesterone (17-OH), 21-hydroxy pro-
gesterone (21-OH)) and 17β-estradiol) as well as metabo-
lites of testosterone, dihydrotestosterone (DHT), were all 
shown to have inhibitory effects on PregS-evoked Ca2+ 
influx, but these effects were relatively small compared 
to the effect of progesterone [107]. However, in contrast 
to such inhibitory effect of progesterone and estradiol on 
PregS-evoked Ca2+ influx, Persoons et al. [42] claimed 
that four steroid hormones (progesterone, estradiol, 
DHEAS, and testosterone) can also act as weak partial 
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agonists and can activate TRPM3 channels at physiologi-
cal body core temperature. The authors also showed that 
these neurosteroids compete for the interaction site of 
TRPM3 channels with PregS and activate the non-canon-
ical pore leading to massive cationic influxes through 
TRPM3 channels. Of the four neurosteroids, DHEAS is 
the most potent agonist (likely because it also carries a 
sulfate group that is important for channel activation, 

similar to PregS), followed by estradiol, testosterone, and 
progesterone. The notion that these neurosteroids can 
both function as full or partial agonists (in the latter case, 
depending on the presence of agonists with higher intrin-
sic activity also as antagonists) of TRPM3 channels, fuels 
the believe that they may have a role in the sex difference 
of migraine nociception. Relevant to the latter, the inter-
action of TRPM3 and sex hormones is also suggested by 

Fig. 2  Modulation of TRPM3 channels by sex steroid hormones and their metabolites. TRPM3 channels are modulated by sex steroid hormones and 
their metabolites, which have varying potencies to activate or inhibit the channels. Pregnenolone sulfate and dehydroepiandrosterone (DHEA), with 
and without sulfate conjugation, serve as activators of TRPM3 channels. In contrast, progesterone, 17β-estradiol, and potent testosterone metabolite 
dihydrotestosterone act as channel inhibitors. Furthermore, progesterone, 17β-estradiol, DHEA, and testosterone (not shown) may also function as weak 
partial agonists of TRPM3 channels (dot array), highlighting their dual roles in channel regulation. Abbreviations: TRPM3, Transient Receptor Potential 
Melastatin 3; iCa²⁺, intracellular calcium; DHEA, Dehydroepiandrosterone. Created with BioRender.com
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the fact that estrogen and progesterone can attenuate 
facilitation of vasoconstriction via TRPM3 channels in 
the vascular system [108].

Sex difference in migraine and relation to TRPM3 channels
Influence of sex hormones in migraine prevalence
After puberty, migraine is much more prevalent in 
women than in men, with an age-standardised preva-
lence of 18.9–20.7% for women and 8.0-9.7% for men 
[11, 13, 109–111]. Among the proposed mechanisms 
that can explain this sex-dependent difference are men-
strual cycle-related hormonal fluctuations of ovarian ste-
roid hormones, specifically estrogen and progesterone 
[112, 113]. In prepubertal children, however, where sex 
hormones have not yet reached the levels seen during 
puberty, migraine prevalence is similar for boys (3.0%) 
and girls (4.0%) [114]. With the onset of puberty, hor-
monal fluctuations directly impact migraine prevalence, 
which increases in both sexes, but with a higher preva-
lence in girls than in boys (6.4% and 4.0%, respectively) 
[114]. This sex-related difference in migraine attacks per-
sists throughout life during the fertile period (i.e., men-
struation, pregnancy, and perimenopause) and declines 
with advanced age when hormone levels drop (i.e., meno-
pausal and post-menopausal stages) [112, 115, 116]. Evi-
dently, the sex differences in migraine attacks highlight 

the role of sex hormones in migraine pathophysiology, 
with an increase in attacks following the onset of men-
arche and a decrease after menopause. Migraine attacks 
(without aura) (1) are triggered by a decline in estrogen 
levels during the late luteal phase of the menstrual cycle 
[4] (see also Fig. 3); (2) decrease or are absent during the 
first trimester of pregnancy and/or the first month of 
breastfeeding, when increased estrogen levels might raise 
the pain threshold [117], suggesting that stably elevated 
estrogen levels protect against migraine attacks; and (3) 
are precipitated (e.g., menstrual migraine) or not during 
estrogen or progesterone withdrawal, respectively [118–
120]. Hence, the prevalence of migraine attacks is linked 
to a function of the hypothalamic-pituitary-ovarian axis 
[112].

Fluctuations in estrogen and progesterone through-
out different menstrual cycle phases can also alter pain 
perception via peripheral nociceptive channels [121]. 
The impact of sex hormones on nociceptive channels 
in brain areas associated with migraine initiation, such 
as the meninges and trigeminal neurons, likely leads to 
their activation and the triggering of migraine pain, or, in 
some cases, provides a protective effect [122]. Moreover, 
progesterone, which is primarily active during the luteal 
phase exerts protective effects against migraine attacks. 

Fig. 3  Hormonal fluctuations and migraine incidence in females. Hormonal fluctuations of estrogen and progesterone across the menstrual cycle are 
mapped to the follicular and luteal phases, with day one marking the onset of menses. Among females of reproductive age, the incidence of their mi-
graine attacks (top part) tends to peak in response to the drop of estrogen and progesterone levels (bottom part), which typically occurs just prior to 
menses onset. This hormonal shift is associated with heightened pain sensitivity, as evidenced by increased hyperalgesia and a lowered pain threshold 
during this time period. Created with BioRender.com
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Unlike estrogen, its decline before menstruation does not 
coincide with worsening migraine symptoms [120].

The role of testosterone in determining the susceptibil-
ity to migraine attacks in men has also been noted but 
its modulatory role in the prevalence and pathophysiol-
ogy of migraine has not yet been clarified. Men with epi-
sodic migraine exhibit high levels of testosterone-free 
β-estradiol [123], while men with chronic migraine show 
low levels of total testosterone compared to men without 
migraine [124], suggesting that there could be a slightly 
different function of the hypothalamic-pituitary-gonadal 
axis in men with migraine compared to those without 
migraine. It remains, however, unknown whether fluc-
tuations in testosterone levels are associated with the fre-
quency of migraine attacks in men. Interestingly, in men 
with migraine, the frequency of clinical symptoms related 
to androgen deficiency is higher compared to patients 
without migraine [125].

Role of sex hormones in migraine pathophysiology: 
interaction with CGRP and TRPM3 channels
Hormonal fluctuations of estrogen and progesterone 
modulate central nervous activity, pain sensitivity, and 
vascular tone, thereby contributing to the development of 
migraine attacks. At the CNS level, estrogen and proges-
terone can modulate the release, function and/or expres-
sion of CGRP [117, 126] and TRP channels, including 
TRPM3 channels [43]. In this respect, estrogen influences 
the release of and sensitivity to CGRP in the trigemino-
vascular system [126, 127], while a withdrawal of estro-
gen increases CGRP expression in brain regions involved 
in autonomic control and pain processing [128, 129]. 
Whether TRPM3 channel agonists can also promote the 
release of the neuropeptide pituitary adenylate cyclase-
activating polypeptide (PACAP), which like CGRP is 
known to induce migraine-like attacks in patients [130], 
remains unexplored. With respect to any sex differences, 
plasma levels of CGRP are higher in women of repro-
ductive age than in men, increasing even more during 
pregnancy [131] or in women undergoing hormonal 
contraception treatment [132]. Furthermore, there is a 
fluctuation in CGRP levels during the menstrual cycle, 
suggesting hormone-dependent changes in CGRP release 
[133, 134]. Therefore, the relationship between estrogen 
fluctuation and CGRP levels might explain the higher 
susceptibility to migraine attacks in women. Unlike 
estrogen, progesterone exerts an opposite effect by 
inhibiting the release of CGRP and modulating sensory 
neurotransmission, vascular responses, and neurogenic 
inflammation [127, 135]. Expanding on the pivotal role 
of CGRP, also TRP channels (including TRPM3 chan-
nels) seem to play a key role in migraine pathophysiology 
and the observed sex difference, considering that they 
(1) are expressed in the trigeminal system innervating 

the meninges; (2) can induce CGRP release from sensory 
nerves; and (3) are modulated by sex hormones [41, 43, 
57, 107, 136]. In this context, the inhibitory effects of pro-
gesterone and 17β-estradiol on TRPM3 channel activity 
underscore a complex sex-dependent mechanism that 
influences nociceptive pathways [43]. Considering that 
sex hormone levels drop during the menstrual cycle, 
one might speculate that the activity and/or expression 
of TRPM3 channels could increase, potentially contrib-
uting to central sensitization in migraine (Fig. 4). There-
fore, the blocking action of TRPM3 channel function by 
estrogen and/or progesterone may represent an endog-
enous mechanism of pain inhibition in women with men-
strual migraine, based on the assumption that when their 
concentrations decrease, TRPM3 channel activity will 
increase, as would happen prior to menstruation. It is 
worth mentioning that progesterone inhibits the perme-
ability of TRPM3 channels at levels typical for the luteal 
phase of the menstrual cycle [107]. Evidence has shown 
that TRPM3 mRNA expression fluctuates significantly 
throughout the menstrual cycle, with a lower expres-
sion during the menses compared to the follicular and 
late luteal phases, when estrogen and progesterone are 
elevated [137]. Moreover, preclinical studies in female 
mice have corroborated these findings, demonstrating an 
upregulation of Trpm3 gene expression during the pro-
estrus stage of the estrous cycle [138], which parallels 
the human follicular phase [139]. Furthermore, a signifi-
cant sex difference was observed in nociceptive activity 
recorded from mouse meningeal afferents, with TRPM3-
mediated firing being much more pronounced in female 
mice [41]. Additionally, women with migraine exhibit sig-
nificantly reduced neurosteroid levels, with serum levels 
of the steroid pre-hormones DHEA, DHEAS, and preg-
nanolone being lower [140]. A parallel study found that 
serum levels of PregS, along with pregnanolone, were also 
lower in women with menstrually-related migraine [141]. 
It has also been shown that PregS is a potent activator 
of TRPM3-mediated gene transcription [142], whereas 
both pregnenolone and progesterone have been indicated 
to interfere with PregS-mediated gene upregulation. In 
this regard, it is intriguing that so-called gain-of-func-
tion mutant TRPM3 channels exhibit increased sensi-
tivity to endogenous PregS [143, 144]. Given that PregS 
stimulates TRPM3 channels one can hypothesize that the 
reduction of levels of PregS, together with that of DHEA 
and DHEAS, in plasma may lead to decreased activation 
of TRPM3 channels, prompting the body to upregulate 
the expression of the TRPM3 channels in an attempt 
to restore normal function and maintain homeostasis. 
Clearly, current evidence suggests that TRPM3 chan-
nels, which are influenced by hormonal fluctuations and 
neurosteroids, may contribute to the sex-specific charac-
teristics of migraine, warranting further exploration into 
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their role as potential therapeutic targets for managing 
migraine, including menstrual migraine.

At the vascular level, sex hormones exert a protective 
effect on the cardiovascular system through the modula-
tion of vascular tone [117, 126]. In this respect, estrogen, 
progesterone and testosterone induce (1) vasodilation via 
the inhibition of Ca2+ influx [145, 146]; (2) the release of 
nitric oxide, prostacyclins, cyclic guanosine monophos-
phate, or cyclic adenosine monophosphate; changes in 
expression of their receptors; or (3) changes in Ca2+ and/
or K+ channel activity [146, 147]. Regarding the potent 
vasodilator effect of CGRP, it has been demonstrated that 
vascular responses mediated by CGRP are similar in men 
with and without migraine, whereas in women there is 

an increase in the CGRP-dependent dermal blood flow 
that correlates with hormonal fluctuations, as vascular 
reactivity to capsaicin is increased during the menstrual 
cycle [148] and reduced in postmenopausal women 
[133]. Moreover, vascular reactivity to capsaicin is more 
pronounced in women with migraine [148] due to the 
increase in CGRP release. Likewise, in cranial vasculature 
(i.e., middle meningeal arteries, a proxy for the trigemi-
novascular system) CGRP shows a sex-specific vasodila-
tor effect. CGRP is less effective in inducing relaxation 
responses in isolated middle meningeal arteries from 
women younger than 50 years of age compared with 
that induced in arteries from men of the same age range, 
without differences in the relaxation responses in arteries 

Fig. 4  Proposed hormonal modulation of TRPM3 channels and nociceptive signalling within the menstrual cycle. The trigeminovascular system is a criti-
cal anatomical structure in migraine pathophysiology, consisting of the cranial meninges innervated by peripheral meningeal nerves and vascularized by 
vessels originating from the middle meningeal artery (MMA) and branches of the trigeminal nerve (TG). The afferents of the TG and MMA closely intersect, 
exerting reciprocal influences on each other. Increased nociceptive activity within meningeal afferents during menses seems to suggest that, outside 
of menses, TRPM3 channel activity is inhibited by elevated levels of progesterone and/or estrogen. This hormonal inhibition prevents afferent activation 
and subsequent neuronal depolarization. However, during menses, declining levels of progesterone and estrogen remove the inhibition, activating 
TRPM3 channels and resulting in increased calcium (Ca²⁺) influx into TG afferents. The Ca2+ influx stimulates the release of calcitonin gene-related peptide 
(CGRP) into the extracellular space, where it binds to receptors on nearby vessels, triggering the release of nitric oxide (NO), causing vasodilation and 
increased local temperature. Nerve fibers subsequently release additional factors, including glutamate (Glut), and pituitary adenylate cyclase-activating 
polypeptide (PACAP), further depolarizing TG meningeal afferents. The sustained activation may drive neurons into a hyperexcitable state, leading to ec-
topic discharges and ultimately resulting in the perception of pain. Abbreviations: MMA, Middle meningeal artery; TG, Trigeminal ganglion nerve; TRPM3, 
Transient receptor potential melastatin 3; iCa²⁺, intracellular calcium; iNa⁺, intracellular natrium; CGRP, Calcitonin gene-related peptide; NO, Nitric oxide; 
PACAP, Pituitary adenylate cyclase-activating polypeptide; Glut, glutamate. Created with BioRender.com
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from women and men older than 50 years [149]. These 
differences may be explained by differential expression 
of CGRP receptors and/or age-dependent fluctuations in 
sex hormone levels [149], which can induce desensitiza-
tion of CGRP receptors in women.

Concerning sex hormone-mediated vascular function 
of TRPM3 channels, a few studies have demonstrated 
that TRPM3 channel function is mediated by PregS to 
induce relaxation responses in different vascular beds 
[64, 65, 150]. TRPM3 channel-mediated vasodilation 
has been shown to be sex-dependent, as responses to 
PregS in human meningeal arteries are more prominent 
in arteries isolated from women than from men [151]. 
This observation suggests that sex hormones might influ-
ence TRPM3 channel activity, or that there is a higher 
expression or sensitivity to these receptors in women. In 
fact, it has been suggested that TRPM3 channel-induced 
relaxation might be mediated by progesterone in preg-
nant women [65]. Additionally, evidence suggests that 
TRPM3 channels and glutamate receptors, particularly 
NMDA receptors, interact to modulate vascular tone. In 
this regard, it is noteworthy that PregS can also modulate 
NMDA receptors [65]. Notably, PregS-induced vasodila-
tion in human meningeal arteries is mediated by the acti-
vation of NMDA receptors in females but not in males, as 
the antagonist MK-801 was able to inhibit the relaxation 
responses induced by PregS only in female arteries [151]. 
The differential responses induced by PregS, as well as 
the differential role of NMDA receptors might offer a 
new perspective for understanding sex dimorphism in 
migraine, as well as represent new therapeutic options 
for migraine treatment.

TRPM3 channel inhibitors as possible anti-migraine 
therapy
Despite preclinical evidence that TRPM3 channels are 
expressed in migraine-relevant tissue and that trigemi-
nal neurons are activated by TRPM3 channel agonists, 
modulators of TRPM3 channels are not yet ready to be 
used as anti-migraine therapy. Regardless, both synthetic 
and plant-derived compounds have been identified and 
characterized as pharmacological TRPM3 antagonists 
[38]. Some have analgesic effectivity in preclinical mouse 
and rat models and are being considered for novel anal-
gesic therapy [152]. Likely, specific TRPM3 channel 
antagonists still need to be developed for clinical trials in 
migraine. An overview of TRPM3 antagonists tested in 
various animal models is provided below.

Selective TRPM3 channel antagonists
Pharmaceutical industry has been very active in devel-
oping selective TRP antagonists, including for TRPM3 
channels, for various pain indications [152], even though 
efforts for migraine are lagging behind. One highlight 

is that, recently, the highly selective TRPM3 antagonist 
BHV-2100 was presented, as a first-in-class compound, 
at the 2024 Annual Meeting of the American Academy 
of Neurology. BHV-2100 effectively alleviated pain, with 
a favorable side effect profile, in preclinical cell and rat 
models with a much higher selectivity over a panel of 
ion channels and receptors, including pro-nociceptive 
TRPV1 and TRPA1 receptors.

Repurposing existing drugs as TRPM3 channel antagonists
Non-steroid anti-inflammatory drugs  Mefenamic 
acid, a non-steroid anti-inflammatory drug (NSAID) that 
reversibly inhibits cyclooxygenase [153] stands out as one 
of the most potent and selective TRPM3 antagonists, with 
an in vitro half-maximal inhibitory concentration (IC50) 
of 6.6 µM [154], which is within the range of plasma con-
centrations obtained after administration of a clinical dos-
age [155]. It effectively inhibited both cytoplasmic Ca2+ 
influx and TRPM3 gene transcription in cells expressing 
activated TRPM3 channels [142], the latter being con-
firmed in another study [156]. In the context of migraine, 
mefenamic acid is an effective preventative medication, 
and seems particularly useful for menstrually-related 
migraine [157, 158] with the additional benefit of reliev-
ing dysmenorrhea. Moreover, clinical guidelines recom-
mend mefenamic acid use as a symptomatic acute therapy 
for patients with menstrually-related migraine [159, 160], 
albeit under careful monitoring due to an increased risk 
of gastrointestinal complications [161, 162] and the risk 
for medication overuse headache development [163, 164]. 
Despite the clear connection between mefenamic acid 
and blockade of TRPM3 channels, their effective inhibi-
tion by mefenamic acid in the context of menstrually-
related migraine remains understudied.

Diclofenac, another NSAID, was also characterized as 
TRPM3 antagonist [165], as it inhibited PregS-evoked 
TRPM3 channel responses in a concentration-dependent 
manner in Ca2+ and electrophysiological assays in cell 
lines expressing isoforms of TRPM3. Other TRP channels 
exhibited either resistance to diclofenac or had minimal 
inhibitory effects, emphasizing its strong selective inhibi-
tory action on TRPM3 channels [165]. Diclofenac is indi-
cated for the treatment of acute and chronic migraine; a 
recent open-label study evaluating the pharmacokinetics 
and safety of diclofenac revealed that diclofenac potas-
sium for oral solution exhibited a favorable pharma-
cokinetic and safety profile in young migraine patients 
with and without aura [166]. Another randomized, pla-
cebo-controlled study demonstrated that a peripherally 
injected single dose of diclofenac is effective for the acute 
treatment of migraine attacks, offering a relatively safe, 
effective, and well tolerated alternative to specific acutely 
acting medications for migraine management [167].
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Anti-diabetic drugs  Anti-diabetic drugs rosiglitazone 
and troglitazone, which belong to the class of thiazoli-
dinediones, were developed to reduce insulin resistance 
in type two diabetes mellitus [168]. Notably, the authors 
claim that inhibitory effects on TRPM3 channels occurred 
rapidly in a biphasic concentration-dependent manner. 
Rosiglitazone has also been shown to inhibit Kir6.1-con-
taining KATP channels, though at relatively high concen-
trations [169]. Emerging evidence suggests the involve-
ment of KATP channels in the pathophysiology of migraine 
and recent research has demonstrated that activation of 
KATP channels can trigger migraine attacks in migraineurs 
[170]. Regardless, there should, of course, be reasonable 
concern when administrating anti-diabetes medication to 
migraine patients, already because of its ability to alter the 
metabolic balance, particularly in glucose and fat metabo-
lism. Consequently, it remains unclear whether this type of 
medication is a fruitful new avenue for treating migraine 
patients. Still, very recently agonism of glucagon-like pep-
tide-1 receptors—which are expressed in various brain 
regions including hypothalamus, cortex and hippocam-
pus, and are involved in regulating glucose homeostasis 
and satiety [171]—has been proposed as promising for the 
treatment of headache and pain disorders [172].

Anti-depressant and anti-convulsant drugs  Sub-
therapeutic concentrations of tetracyclic anti-depressant 
maprotiline and anti-convulsant primidone inhibited 
pure-PregS and clotrimazole-PregS responses in vitro and 
attenuated heat- and PregS-induced nocifensive behav-
ior and inflammatory hyperalgesia in vivo [173]. Primi-
done was shown to improve symptoms in TRPM3-linked 
epilepsy [174], but there are no publications showing a 
potential synergistic or additive benefit of combining it 
for migraine treatment.

Flavonoids as powerful inhibitors of TRPM3 channels
Flavonoids, particularly fruit flavanones and their deriva-
tives, are since long considered one of the more powerful 
groups of biologically active substances [175]. Recently, 
Bakirhan et al. [176] demonstrated that flavanone intake 
seemed correlated with a reduced migraine severity, while 
a lower intake was associated with more severe migraine 
attacks. It was also shown that genistein-based soy iso-
flavones, which mimic the action of estrogen by binding 
to estrogen receptors [177], significantly reduced the fre-
quency and duration of migraine attacks, as well as CGRP 
levels [178]. Preclinical in vivo studies exploring mecha-
nisms by which genistein could alleviate migraines, also 
evidenced by decreased migraine-like symptoms of ther-
mal and mechanical allodynia in nitroglycerin-induced 
migraine rats, indicate a potential therapeutic efficacy 
in migraine [179, 180]. Although the exact pathophysi-
ological mechanisms underlying the correlations remain 

unclear, one may speculate that flavanones and their 
derivatives (isoflavones) might exert analgesic efficacy 
by modulating the activity of TRPM3 channels. In this 
context it is relevant to note that citrus fruit flavanones, 
such as hesperetin, naringenin, eriodictyol, and ononetin, 
seem potent and selective blockers of TRPM3 channel 
activity [181]. As citrus itself is sometimes reported to be 
a migraine trigger [182], potentially due to its putrescine 
content, which may inhibit histamine catabolism in the 
intestines [183], purified flavanones are better consid-
ered to have therapeutic benefit. Isosakuranetin, whose 
glycoside is found in blood oranges and grapefruits, and 
liquiritigenin, displayed the most potent inhibition of 
TRPM3 channels. Almost two decades ago, hesperetin 
was proposed to control pathophysiological disturbances 
of brain excitability, which also has relevance to what 
happens in a migraine brain [184]. Straub et al. [185]. 
showed that isosakuranetin and liquiritigenin exhibited 
marked specificity for TRPM3 compared with other sen-
sory TRP channels, and blocked PregS-induced signals in 
isolated DRG neurons. Furthermore, isosakuranetin and 
hesperetin significantly reduced the sensitivity of mice 
to noxious heat and PregS-induced chemical pain in vivo 
[185]. Anti-nociceptive effects of isosakuranetin were 
revealed in animals, where it dose-dependently alleviated 
mechanical, thermal, and cold hyperalgesia with no effect 
on motor performance [186]. In a recent study intraperi-
toneal injection of isosakuranetin, effectively reduced the 
oxaliplatin-induced pain behavior in response to cold 
and mechanical stimulation in mice [101]. In addition, 
the TRPM3 channel blocker ononetin reversed a com-
plete Freund’s adjuvant-induced hypersensitivity in mice 
[187]. Finally, a study showed that ononetin, isosakurane-
tin, and naringenin related antagonism of TRPM3 
channel signalling can prevent pain mechanohypersen-
sitivity [100]. Notwithstanding the research on the vari-
ous TRPM3 channel antagonists, the potential benefit of 
these molecules in a migraine context is still in its infancy 
but deserves more thorough investigation.

Concluding remarks and future perspectives
An increasing number of experimental studies indicate 
high functional activity of TRPM3 channels in the brain 
and peripheral tissues, and most relevant to the topic of 
this review, in neurons and the vasculature, which are 
relevant to migraine pathophysiology. Among the most 
interesting findings for migraine, thus far, is the surpris-
ingly strong activity of TRPM3 channels observed in 
trigeminal afferents of female mice, aligning with clini-
cal observations that migraine is more prevalent and 
severe in women compared to men. The high sensitivity 
of TRPM3 channels to female sex hormones and related 
steroids further reinforces the proposed role of TRPM3 
channels in the sex difference observed in migraine. 
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Moreover, the vascular activity of TRPM3 warrants 
attention, as TRPM3 channels have been implicated in 
modulating vascular tone and permeability, which could 
influence migraine-associated neurovascular changes. 
Therefore, the interplay between neuronal and vascular 
TRPM3 activity might provide a more comprehensive 
understanding of the mechanisms underlying sex-related 
differences in migraine. Some attractive, yet still miss-
ing, elements in TRPM3 research in migraine include 
investigations into (1) how TRPM3 channels activate 
not only CGRP release but also the release of other 
migraine mediators, such as PACAP; (2) potential syner-
gies between different modes of TRPM3 activation; (3) 
crosstalk with other pronociceptive ion channels; and 
(4) testing of classical and new selective TRPM3 antago-
nists in migraine-relevant animal models. Based on such 
knowledge, this research could guide future clinical tri-
als for migraine. With regard to the various modulators 
of TRPM3 function that were discussed, whereas it is 
worthwhile further evaluated their potential as migraine 
treatment, one has to realize that the bioavailability of 
for instance the flavonoids is very low. To conclude, we 
propose that TRPM3 channel activity may help explain 
the sex difference observed in migraine prevalence, while 
TRPM3 channel antagonism could represent a promis-
ing therapeutic avenue for the treatment of (menstrual) 
migraine pain in females, highlighting its potential as a 
target for the development of a new class of anti-migraine 
treatments.
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