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Abstract
The biopsychosocial model suggests that temporomandibular disorders (TMDs) often coexist with mental health 
disorders, particularly depression and anxiety, affecting a significant portion of the global population. The interplay 
between TMDs and mental health disorders contributes to a complex comorbidity, perpetuating a cycle of mutual 
influence and reinforcement. This review investigates the neurobiological mechanisms and epidemiological 
evidence supporting the shared etiology of TMDs and mental health disorders, exploring potential shared 
vulnerabilities and bidirectional causal relationships. Shared vulnerabilities between TMDs and mental health 
disorders may stem from genetic and epigenetic predispositions, psychosocial factors, and behavioral aspects. 
Inflammatory cytokines, neurotransmitters, neurotrophins, and neuropeptides play pivotal roles in both peripheral 
and central sensitization as well as neuroinflammation. Brain imaging studies suggest that TMDs and mental 
health disorders exhibit overlapping brain regions indicative of reward processing deficits and anomalies within 
the triple network model. Future research efforts are crucial for developing a comprehensive understanding of the 
underlying mechanisms and confirming the reciprocal causal effects between TMDs and mental health disorders. 
This review provides valuable insights for oral healthcare professionals, stressing the importance of optimizing 
treatment strategies for individuals dealing with concurrent TMDs and mental health issues through a personalized, 
holistic, and multidisciplinary approach.
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Introduction
Temporomandibular disorders (TMDs) encompass a 
range of conditions affecting the temporomandibular 
joint (TMJ), masticatory muscles, and related tissues. 
These disorders are typically characterized by pain and 
functional impairments [1]. TMDs represent a signifi-
cant public health concern, ranking as the second most 
prevalent source of musculoskeletal pain behind low 
back pain, with prevalence estimating ranging from 5 to 
12% [2]. Although the prevalence of TMDs symptoms 
is not age-specific, the age group most affected is adults 
aged 20 to 40 years [3]. Additionally, epidemiological 
studies have demonstrated that women are significantly 
more likely than men to experience TMDs symptoms 
[3]. Despite the complexity and incomplete understand-
ing of TMDs etiology, a biopsychosocial model is often 
employed to elucidate the interplay between biological, 
psychosocial factors in these conditions [4]. According 
to the Diagnostic Criteria for Temporomandibular Dis-
orders (DC/TMD), TMDs are classified into two main 
categories: ① pain-related conditions, which include 
myalgia, arthralgia, and TMDs-related headache; ② joint 
disorders, which consist of various types of disc displace-
ment, degenerative joint disorders, and subluxation [5]. 
Chronic pain conditions beyond headaches are also com-
monly associated with TMDs, including fibromyalgia, 
myofascial pain, and orofacial neuralgia following whip-
lash-associated trauma [6, 7]. These conditions may serve 
as differential diagnoses in clinical assessments. Acute 
painful TMDs are typically self-limiting and have a favor-
able prognosis, while chronic painful TMDs are associ-
ated with persistent functional impairment and mental 
health disorders [8]. Additionally, the Graded Chronic 
Pain Scale (GCPS) serves as a biopsychosocial screening 
tool for the subtyping of painful TMDs [9, 10].

Both chronic pain and mental health disorders contrib-
ute to approximately 11% of global disability, underscor-
ing their combined detrimental effects on overall health 
as well as their significant societal and economic impacts 
[11, 12]. A systematic review found that the prevalence 
of moderate-to-severe somatization and depression 
was high among TMDs patients, while severe physical 
impairment was rarely reported [13]. Manfredini et al. 
found the association between Axis I diagnoses and pain-
related impairment was not significant [14]. Predictors of 
high pain-related disability were mainly associated with 
psychosocial factors including severe depression, soma-
tization, and elements related to the pain experience, 
such as chronic pain lasting more than six months and a 
tendency to seek treatment [14]. What’s more, higher lev-
els of pain-related impairment were associated with the 
most severe scores of depression and somatization [15].

Persistent pain can lead to maladaptive thought pat-
terns and behaviors, impair daily functioning, increase 

psychological distress, and potentially exacerbate the 
pain experience. A recent study suggested that a cohort 
of patients diagnosed with persistent orofacial pain 
(POFP) who began treatment at age 25 could only expect 
to accumulate a mere 18 Quality-Adjusted Life Years 
(QALYs) per individual before their demise. This alarm-
ing projection served to underscore the profound and 
far-reaching long-term consequences associated with 
this disorder [16]. In TMDs patients, various mental 
health disorders have been found to be linked to height-
ened levels of pain and disability. These factors include 
psychological distress, pain catastrophizing, fear-avoid-
ance behaviors, depression, anxiety, and passive coping 
strategies. Numerous cross-sectional studies have high-
lighted these associations [17–19], but the mechanisms 
underlying their comorbidity remain unclear. It is essen-
tial to explore whether the relationship between TMDs 
and mental health disorders is causal in nature and what 
factors mediate this causality, as this has significant clini-
cal implications.

Generally, the mechanisms underlying comorbidities 
can be categorized as follows [20]: (1) one disease precip-
itates the onset of another; (2) pharmacological treatment 
for the initial disease induces the subsequent disease; (3) 
a common risk factor contributes to the development 
of both diseases; (4) a secondary disease facilitates the 
emergence of both primary diseases; or (5) correlated 
risk factors, each independently contributing to the onset 
of one of the diseases. The mechanisms mentioned above 
may more or less be present in the interaction between 
TMDs and mental health disorders, where they influence 
and reinforce each other, ultimately leading to a “vicious 
circle” (Fig. 1). In this review, we explored the potential 
comorbid mechanisms between TMDs and mental health 
disorders by examining both clinical and preclinical evi-
dence, aiming to offer more comprehensive approaches 
to their treatments and managements. This review places 
its emphasis on the painful TMDs within the classifica-
tion of TMDs, and primarily focuses on the symptoms 
of depression and anxiety as key types of mental health 
disorders.

Potential shared vulnerabilities
Potential shared vulnerabilities of TMDs and mental 
health disorders may involve genetic/epigenetic predis-
position, psychosocial and behavioral factors.

Genetic/epigenetic predisposition
At present, there is limited evidence that TMDs and 
mental health disorders share genetic or epigenetic risk 
factors. The Val158Met polymorphism (rs4680) in the 
catechol-O-methyltransferase (COMT) gene may help 
explain the frequent coexistence of mental health disor-
ders and TMDs [21–23]. An animal study demonstrated 
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that low levels of COMT, combined with stress, exac-
erbate functional pain and depressive behaviors, par-
ticularly in female mice [24]. Additionally, Slade et al. 
found that low-activity COMT diplotype interacts with 
increased environmental stress, which elevates the risk 
of developing TMDs [25]. In a prospective cohort study, 
2,737 individuals without TMDs underwent assessment 
for common genetic variation in 358 genes associated 
with affective distress, nociceptive pathways and inflam-
mation. While no single nucleotide polymorphism (SNP) 
was significantly associated with the risk of TMDs onset 
after correction for multiple comparisons using the Bon-
ferroni method, several SNPs, such as prostaglandin-
endoperoxide synthase 1 (PTGS1) and amyloid-β (A4) 
precursor protein (APP), exceeded the thresholds for 
association with intermediate phenotypes predictive 
of TMDs onset when applying the false discovery rate 

approach [26]. PTGS1 was found to be associated with 
global psychological symptoms, playing a pivotal role 
in regulating neuronal sensitivity to pain and mediating 
inflammatory responses. In addition, it was suggested 
that APP polymorphisms might contribute to impair-
ments in coping mechanisms for stressful life events 
among individuals affected by TMDs.

Psychosocial factors
Deficits in reward learning
Deficits in reward learning predispose individuals to 
maladaptive responses to chronic pain and depression, 
particularly following psychological or somatic trauma 
[27]. These deficits not only exacerbate reward process-
ing dysfunction but also increase vulnerability to both 
conditions. Clinical outcomes are significantly influenced 
by patients’ expectations for pain relief and quality of life 

Fig. 1  Potential aetiopathogenic mechanisms of the interaction between TMDs and mental health disorders
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improvement; higher expectations are associated with 
better results [28]. Additionally, deficits in reward learn-
ing predisposed individuals to depression. A longitudinal 
study demonstrated that dysfunction in reward process-
ing acted as a biobehavioral predictor for adolescent 
depression [29]. Evidence also supported that anhedonia 
served as a possible predictor of treatment outcomes and 
remission times in depression patients [30, 31]. Increased 
affective distress often correlates with lower expectations 
of pain relief, underscoring the interconnectedness of 
reward processing, pain, and depression.

Negative evaluation bias
Chronic pain patients are inclined to perceive ambigu-
ous stimuli as pertaining to pain or illness. And this bias 
towards negative interpretations is a known risk factor 
for developing mental health disorders [32]. Trait anxi-
ety, somatosensory amplification, and hypervigilance are 
three psychological constructs linked to TMDs, forming 
a significant triad connecting various psychosocial states 
[33]. Trait anxiety, characterized by perceiving situations 
as threatening, avoiding anxiety-provoking scenarios, 
and exhibiting high baseline physiological arousal, may 
potentially result in increased masticatory muscle activity 
and more severe episodes of tooth clenching during wak-
ing hours [34]. Individuals with somatosensory amplifi-
cation tended to experience normal bodily sensations 
intensely, perceiving them as painful and bothersome. 
Individuals with heightened somatosensory amplifica-
tion tended to experience abnormal occlusal sensitivity 
[35, 36]. This phenomenon might be attributed to threat-
related attentional bias. Individuals with heightened 
somatosensory amplification might perceive occlusal or 
dental changes as potential threats, resulting in distinct 
sensory processing and behavioral responses compared 
to those who do not [35]. Bucci et al. found that patients 
with painful TMDs exhibited enhanced occlusal tactile 
sensitivity compared to healthy controls. This heightened 
sensitivity might be associated with patients’ perception 
of pathological signals, which could in turn be linked to 
increased symptom severity [37].

Catastrophic thoughts
Catastrophic thoughts, including rumination, magnifi-
cation, and helplessness, are pivotal in the development 
of mental health disorders [38]. Magnification, which 
involves worries about the severity of potential outcomes, 
and rumination, characterized by persistent reflection 
on the pain, are linked to primary appraisal processes. 
This highlights how individuals tend to focus on and 
amplify the threatening nature of painful stimuli. In con-
trast, helplessness, where individuals believe they can-
not alleviate pain intensity, is associated with secondary 
appraisal processes, reflecting negative self-assessments 

of coping capacity [39]. Patients with TMDs who have 
pain-related disability tended to exhibit higher levels of 
catastrophic thoughts compared to those without disabil-
ity [19]. These findings emphasized a strong association 
between pain catastrophizing and disability in chronic 
TMDs sufferers.

Personality traits
The influence of personality traits on the onset of TMDs 
and mental health disorders is another area worthy of 
further investigation. The personality trait of neuroticism 
is associated with anxiety and depression. In a recent 
study, Zhang and colleagues found that both MDD and 
subjective well-being were strongly genetically associated 
with neuroticism, supported by significant bidirectional 
causal effects and shared genetic enrichment, indicating 
common genetic factors [40]. Neuroticism also has an 
effect on the quality of life related to oral health. Indi-
viduals with higher neuroticism levels are associated 
with heightened TMDs pain perception and increased 
parafunctional behaviors [41–43]. Furthermore, indi-
viduals with high emotional stability and conscientious-
ness personality traits were significantly less associated 
with TMDs symptoms [41, 43]. In addition, low extra-
version was associated with various symptoms (limited 
jaw movements, joint sounds, and masticatory muscle 
tenderness), and high extraversion was associated with a 
specific oral habit—teeth clenching behavior [41, 43].

Behavioral factors
Poor subjective sleep quality is a significant predictor of 
TMDs, surpassing traditional risk factors [44]. Insomnia 
can lead to hyperalgesia and may trigger or worsen spon-
taneous pain symptoms. It is also crucial to recognize 
that insomnia contributes to the onset of mental health 
disorders [45]. A systematic review and meta-analysis 
further revealed the mediating effect of sleep quality on 
the relationship between depression and chronic pain 
[46]. Additionally, Yang et al. found the mediating effect 
of sleep quality on the association between mental health 
disorders and TMDs pain [47].

Bidirectional casual relationship between TMDs 
and mental health disorders
The relationship between TMDs and mental health dis-
orders is likely bidirectional and mutually reinforcing. 
However, some studies provide only partial support for 
this hypothesis [48, 49].

Some Mendelian randomization (MR) studies and 
Orofacial Pain: Prospective Evaluation and Risk Assess-
ment (OPPERA) studies have found that anxiety, depres-
sion, and somatic symptoms are risk factors for TMDs 
[48–51]. Fillingim et al. conducted an analysis of 26 psy-
chosocial measures, identifying the frequency of somatic 
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symptoms as the most significant predictor of TMDs 
incidence. In comparison, pain-coping strategies and 
mental health disorders, such as psychological stress, 
anxiety, and obsessive-compulsive feelings, were found to 
have a comparatively weaker impact on predicting TMDs 
incidence [52]. In addition, mental health disorders are 
closely associated with increased jaw motor responses, 
potentially mediated through the paraventricular hypo-
thalamic nucleus and the trigeminal premotor area cir-
cuit [53]. Oral behaviors, such as clenching or grinding, 
can increase the load and mechanical stress on the TMJ, 
leading to pathological changes in the joint and sur-
rounding tissues [54]. However, whether oral behaviors 
directly cause TMDs pain remains controversial. Svens-
son et al. reported that TMDs pain caused by clenching 
or grinding was typically mild and transient, which did 
not explain persistent orofacial pain [55]. While psy-
chological factors may exacerbate pain by inducing oral 
behaviors, Yang et al. didn’t observe the mediating effect 
of oral behaviors on the association between mental 
health disorders and TMDs pain [47]. In addition, a case-
control study demonstrated that there was no association 
between sleep bruxism, as diagnosed by polysomno-
graphic examination, and TMDs [56]. However, fur-
ther longitudinal studies are needed to clarify the causal 
relationship.

In general, chronic pain is significantly associated with 
mental health disorders such as depression and anxiety. 
Long-term pain not only reduces quality of life and daily 
activities but also leads to a decline in hedonic pleasure 
and motivation. More severe pain is often linked to a 
further decrease in pleasure, which can eventually trig-
ger or worsen mental health problems [57]. However, in 
a recent bidirectional two-sample MR study, Que et al. 
found that genetically predicted depression had a causal 
effect on TMDs, while anxiety disorder did not, and there 
was no strong evidence of TMDs causing depression or 
anxiety [49]. Another MR study discovered that major 
depressive disorder (MDD) and panic disorder were 
associated with a heightened risk of TMDs, yet failed to 
identify any causal link between TMDs and these psychi-
atric conditions on the reverse MR analysis [48].

In summary, to clarify the nature of the bidirectional 
interaction, the etiological model emphasizes the need 
for longitudinal research to establish temporal prece-
dence. At present, the quality of the available evidence 
is inadequate, and establishing causality in this area 
remains challenging.

Neurobiological mechanism overlap
Pathophysiological mechanisms
Painful TMDs activate both the ascending pain pathway 
and the descending pain regulation system [58] (Fig. 2). 
Pain signals are conveyed through primary sensory 

neurons in the trigeminal nerve to the trigeminal gan-
glion (TG). These signals are then relayed to the spinal 
trigeminal nucleus caudalis (SpVc) through spinal tri-
geminal tract. From the brainstem, the signals ascend to 
ventral posterior medial nucleus in the thalamus (VPM) 
through trigeminal-thalamic tract. The VPM then project 
to various cortical areas, such as the primary and second-
ary somatosensory cortices (S1 and S2), the prefrontal 
cortex (PFC), the anterior cingulate cortex (ACC), insu-
lar cortex (IC) and the amygdala. The nociceptive input 
transmitted to the SpVc also projects to the parabrachial 
nucleus (PBN), which further relays signals to the VPM, 
the periaqueductal gray (PAG), the amygdala.

Ascending afferent pain signals activate descend-
ing pathways from the PAG in the midbrain, modulat-
ing pain perception. The PAG receives projections from 
the S1 and S2, the PFC, the ACC, the IC, and the amyg-
dala. The rostral ventromedial medulla (RVM) is a criti-
cal nucleus in the descending inhibitory and facilitatory 
systems, receiving inputs from the PAG, PBN, and locus 
coeruleus (LC). Neuronal activity within the RVM can 
produce either inhibitory or facilitatory effects on pain. 
This integrated network ensures precise pain percep-
tion and modulation, maintaining a balanced nociceptive 
response. Anomalies in descending pain modulation may 
enhance pain perception in patients suffering from pain-
ful TMDs.

Peripheral sensitization and central sensitization are 
two key mechanisms for the exacerbation and chronic-
ity of painful TMDs. Peripheral sensitization increases 
the responsiveness and lowers the pain threshold of 
nociceptive neurons to stimulation in the fields of tissue 
damage [59] (Fig.  3). Tissue injury releases inflamma-
tory chemical mediators, which subsequently activate 
immune cells, such as neutrophils, mast cells and mac-
rophages. Activated immune cells subsequently produce 
inflammatory mediators like serotonin (5-HT), Prosta-
glandin E2 (PGE2), nerve growth factor (NGF), adenosine 
triphosphate (ATP), tumor necrosis factor-α (TNF-α), 
and Interleukin-1β (IL-1β), which stimulate receptors on 
nociceptive terminals more frequently, perpetuating the 
inflammatory process. In addition, inflammatory media-
tors acting on TG neuron nociceptors can upregulate the 
expression of transient receptor potential vanilloid sub-
type 1 (TRPV1) channel, inducing calcium influx and 
releasing neuropeptides such as Substance P (SP) and 
calcitonin gene-related peptide (CGRP). These neuro-
peptides affect the vasculature and directly attract and 
activate immune cells, contributing to sustained nocicep-
tor activation [60].

In the TG, the interaction between TG neurons and 
satellite glial cells (SGCs) is vital for promoting periph-
eral sensitization [61]. SP released from TG neurons acti-
vates SGCs via the ERK1/2 and p38 signaling pathways, 
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facilitating the secretion of pro-inflammatory cytokines 
such as IL-1β, TNF-α, and CCL2 [62]. Similarly, CGRP 
acting on SGCs can induce the expression of pro-inflam-
matory factors like TNF-α and IL-1β [63]. The activation 
of IL-1R and TNFR can upregulate voltage-gated sodium 
channel 1.7 (Nav1.7) and TRPV1 channels in TG neu-
rons [64]. Abnormalities in glutamate and extracellular 
K+ levels are anticipated to enhance neural activity, while 
peripheral inflammation decreases inwardly rectifying 
potassium channel 4.1 (Kir4.1) currents in SGCs [65]. 
When glutamate binds to N-methyl-D-aspartate receptor 
(NMDAR), it triggers Ca2+ influx, promoting cAMP pro-
duction and activating the ERK-CREB signaling pathway 
in response to inflammatory stimuli [66]. Additionally, 
SGCs communicate through gap junctions, while neu-
rons communicate via signals such as NGF, NO, and ATP, 
leading to the activation of adjacent TG neurons [61]. 
The P2Y14 receptor in the TG may contribute to orofa-
cial inflammatory pain by regulating SGCs activation 

and the release of cytokines including IL-1β, TNF-α, and 
CCL2, along with phosphorylating ERK1/2 and p38 [67].

Central sensitization refers to the increased respon-
siveness of nociceptive neurons in the central nervous 
system to normal or subthreshold afferent signals [68]. 
This phenomenon typically occurs in tissues without 
harmful conditions [59, 69] (Fig.  4). Nociceptive input 
induces the release of ATP, glutamate, and SP from the 
terminals of primary neurons. The sustained release of 
glutamate and SP facilitates Ca²⁺ entry into the neuron, 
activating intracellular pathways [70]. Under normal 
conditions, inhibitory interneurons continuously release 
gamma-aminobutyric acid (GABA) and/or glycine to 
decrease the excitability of secondary neurons [70]. 
The descending pain modulation system releases 5-HT 
and norepinephrine (NE), which not only decrease the 
release of glutamate and SP from primary neurons but 
also act on inhibitory interneurons, prompting them to 
release endogenous opioid peptides (EOPs), thereby alle-
viating pain [71–74]. Additionally, ATP, fractalkine, and 

Fig. 2  The ascending and descending pathway of pain. Abbreviations: S1, the primary somatosensory cortices; S2, the secondary somatosensory corti-
ces; PFC, prefrontal cortex; ACC, anterior cingulate cortex; IC, insular cortex; AMG, amygdala; PAG, periaqueductal gray; RVM, rostral ventromedial medulla; 
SpVc, spinal trigeminal nucleus caudalis; LC, locus coeruleus; PBN, parabrachial nucleus; NAc, nucleus accumbens; VTA, ventral tegmental area. Created 
with BioRender.com
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Fig. 3  Mechanisms of peripheral sensitization. Abbreviations: TG, trigeminal ganglion; TMJ, temporomandibular joint; ATP, adenosine triphosphate; SP, 
substance P; CGRP, calcitonin gene-related peptide; NK1R, neurokinin-1 receptor; 5-HT, serotonin (5-hydroxytryptamine); PGE₂, Prostaglandin E2; NGF, 
nerve growth factor; IL-1β, Interleukin-1β; TNF-α: tumor necrosis factor-α; TRPV1, transient receptor potential vanilloid 1; EP2R, E-prostanoid 2 receptor; 
TrkA, tropomyosin receptor kinase A; P2XR/P2YR, P2X/Y receptor; SGC, satellite glial cells; Cx43, connexin 43; Nav1.7, voltage-gated sodium channel 1.7; 
Kir4.1, inwardly rectifying potassium channel 4.1; Glu, glutamate; NMDAR, N-methyl-D-aspartate receptor. Created with BioRender.com
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Fig. 4  Mechanisms of central sensitization. Abbreviations: ATP, adenosine triphosphate; SP, substance P; Glu, glutamate; EOPR, endogenous opioid re-
ceptor; α2-AR, alpha-2 adrenergic receptor; 5-HT1AR, 5-hydroxytryptamine 1 A receptor; GABAR, gamma-aminobutyric acid receptor; 5-HT, serotonin 
(5-hydroxytryptamine); NE, norepinephrine; BDNF, brain-derived neurotrophic factor; TrkB, tropomyosin receptor kinase B; GABA, gamma-aminobutyric 
acid; Gly, glycine; EOP, endogenous opioid peptide; NMDAR, N-methyl-D-aspartate receptor; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid receptor; NK1R, neurokinin-1 receptor; GlyR, glycine receptor; DAMPs, damage-associated molecular patterns; FKN, frac-talkine; P2XR, P2X receptor; 
TLR, Toll-like receptor; CX3CR1, CX3C chemokine receptor 1; NLRP3, NOD-like receptor family pyrin domain containing 3; GLAST, glutamate transport-
ers glutamate-aspartate transporter; GLT-1, glutamate transporter-1; Gln, Glutamine; GFAP, glial fibrillary acidic protein; SLC38A3, solute carrier family 38 
member 3; SpVc, spinal trigeminal nucleus caudalis. Created with BioRender.com
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damage-associated molecular patterns (DAMPs) can 
bind to P2X receptor (P2XR), CX3C chemokine receptor 
1 (CX3CR1), and Toll-like receptors (TLR) on the surface 
of microglia, respectively. This binding results in microg-
lial inflammatory activation, which causes an abnormal 
increase in the release of proinflammatory cytokines and 
brain-derived neurotrophic factor (BDNF). BDNF acts on 
inhibitory interneurons, causing them to become excit-
atory, leading to allodynia [75]. In addition, inflammatory 
processes can activate the p38 MAPK/NF-κB pathway 
and induce the transcription of NLRP3 in microglia, 
resulting in an abnormal increase in the release of ROS 
and inflammatory cytokines such as TNF-α, IL-1β, and 
IL-6, which contribute to central sensitization [76, 77]. 
What’s more, reactive astrocytes release glial fibrillary 
acidic protein (GFAP) and IL-1β. The astroglia gluta-
mate-glutamine shuttle is a critical mechanism support-
ing central sensitization [78]. Activation of astrocytes 
can lead to an imbalance in glutamate and GABA levels, 
resulting in an unequal input from excitatory and inhibi-
tory neurons, thereby amplifying pain signals.

Under pathological pain conditions, inflammation 
stimulates the expression of indoleamine 2,3-dioxygen-
ase 1 (IDO1) in macrophages and dendritic cells, leading 
to an increase in kynurenine metabolites and a simul-
taneous reduction in tryptophan and 5-HT levels [79]. 
Elevated plasma kynurenine crosses the blood-brain bar-
rier, encouraging microglia to produce excitotoxic com-
pounds, such as quinolinic acid, which further reduces 
5-HT synthesis within the brain [80]. Additionally, 
quinolinic acid contributes to neuronal excitotoxicity 
and induces the production of reactive oxygen species 
and nitric oxide, causing oxidation of tetrahydrobiop-
terin and diminishing dopamine synthesis in the brain 
[81]. This upregulation of the kynurenine pathway and a 
subsequent decrease in dopamine synthesis in the brain 
heighten the risk of developing depression [82]. More-
over, some cytokines, including IL-1, IL-6, TNF, CCL2, 
CCL11 and cytokine-induced neutrophil chemoattrac-
tant-1, and peripheral immune cells like neutrophils, 
macrophages are capable of crossing the blood-brain bar-
rier under pathological conditions [83]. Moreover, the 
interaction between astrocytes and microglia plays a cru-
cial role in neuroinflammation [84]. These mechanisms 
may lead to the damage of neurons and oligodendro-
cytes, potentially resulting in the comorbidity of painful 
TMDs and mental health disorders (Fig. 5).

Specifically, inflammatory cytokines, neurotransmitter, 
neurotrophins, and neuropeptide play an important role 
in the pathophysiological mechanism of TMDs and men-
tal health disorders.

Inflammatory cytokines
Shared inflammatory cytokines may be a common 
mechanism underlying the comorbidity of TMDs and 
mental health disorders (Fig.  6). Patients with TMDs 
exhibit elevated levels of pro-inflammatory cytokines, 
including IL-1α, IL-1β, IL-6, IL-8, TNF-α and TNF-β, as 
well as anti-inflammatory cytokines such as IL-4, IL-10, 
IL-13, interleukin-1 receptor antagonist (IL-1ra), in both 
plasma and masticatory muscles [85]. When the produc-
tion of pro-inflammatory cytokines is reduced, patients 
often experience significant improvements in pain symp-
toms [86]. The presence of elevated anti-inflammatory 
cytokines indicates a localized production aimed at 
counteracting inflammation. However, this compensa-
tory response may be insufficient. Additionally, chronic 
inflammation affects collagen structures, leading to the 
deterioration of the ultrastructure and nanomechani-
cal properties of TMJ discs [87]. Elevated levels of col-
lagenases (MMP-1, MMP-8, MMP-9, MMP-13), matrix 
metalloproteinase-3 (MMP-3), and gelatinases (MMP-2, 
MMP-7) can be detected in the synovial fluid of the TMJ 
[85].

Dysregulation of the peripheral immune system may 
represent an essential mechanism driving brain altera-
tions that underpin the pathophysiology of mental health 
disorders [88, 89]. The levels of IL-1β, IL-6, and TNF-α 
entering the bloodstream from the brain can be signifi-
cant enough to elevate their concentrations in the blood 
[83]. In addition, as previously mentioned, neuroinflam-
mation may play a role in causing depression. Therefore, 
it seems reasonable to assume that peripheral immune 
dysregulation associated with TMDs may serve as a 
potential pathway for eliciting functional and structural 
brain alterations, leading to mental health disorders. In 
turn, pro-inflammatory cytokines enhanced by men-
tal health disorders possibly mediate muscle and joint 
hyperalgesia, potentially increasing pain sensitivity by 
sensitizing nociceptors in peripheral nerves.

Neurotransmitter
Glutamate  Glutamate plays an important role in pain 
processing, peripheral and central sensitization. A case-
control study demonstrated elevated plasma and salivary 
glutamate concentrations in TMDs-myalgia patients, 
though these levels lacked significant association with 
self-reported pain intensity [90]. Notably, the study 
additionally identified reduced salivary NGF and BDNF, 
alongside elevated plasma BDNF levels, which exhibited 
a significant association with psychological maladjust-
ment [90]. Increased expression of peripheral NMDARs 
in women might be associated with heightened pain sen-
sitivity in the masseter muscle [91]. There is a functional, 
bidirectional interaction between glutamate receptors 
and TRP channels that influences the modulation of tri-
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geminal nociceptors. When glutamate receptors are acti-
vated, they trigger protein kinase C, which phosphory-
lates TRPV1. The combined sensitization of TRPV1 by 
both inflammatory mediators and glutamate receptors, 
alongside endogenous ligands, played a role in the devel-
opment of masseter muscle hyperalgesia [92]. Addition-
ally, concentrations of the glutamate and its precursor 

glutamine in pain-related brain regions showed a positive 
correlation with individual pain sensitivity [93].

GABA  GABAergic neurons encompass both projection 
neurons and interneurons. In peripheral nervous system, 
Antonopoulos et al. found that the expression of GABAB 
receptor subunits (GABAB1 and GABAB2) in the TG was 
reduced in the model of chronic TMDs [94]. In addition, 
the activation of GABAB receptors in satellite glial cells 
within the TG has been shown to alleviate inflammatory 
facial allodynia. This activation also suppresses the ele-

Fig. 5  Mechanisms of neuroinflammation. Abbreviations: TPH, tryptophan hydroxylase; IDO1, indoleamine 2,3-dioxygenase 1; 5-HT, serotonin (5-hy-
droxytryptamine); LAT1, large amino acid transporter 1; TNF-α: tumor necrosis factor-α; IL-1β, Interleukin-1β; IFN-γ, Interferon-γ; NO, nitric oxide; ROS, 
reactive oxygen species. Created with BioRender.com
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vated expression of IL-1β in satellite glial cells observed 
during inflammatory allodynia [78].

In central nervous system, evidence suggested that 
inter-regional projections involving glutamatergic and 
GABAergic neurons played a crucial role in pain and 
mental health disorders. Xue et al. found that most rostral 
ventromedial medulla (RVM) neurons projecting to SpVc 
were either GABAergic, inhibiting craniofacial nocicep-
tion, or glutamatergic, facilitating it [95]. Manipulating 
these pathways, either by activating GABAergic neurons 
or inhibiting glutamatergic neurons in SpVc, effectively 
reversed inflammation-induced masseter hyperalgesia. 
Zhu et al. identified that GABAergic neurons from the 
central amygdala projected to glutamatergic neurons in 
the parafascicular nucleus, highlighting the involvement 
of this pathway in regulating pain symptoms associated 
with depression through connections to the S2 [96]. Yan 
et al. observed increased excitation of a pathway involv-
ing glutamatergic neurons from layer 5 of the hindlimb 
S1 projecting to GABAergic neurons in the caudal dor-
solateral striatum in mice with persistent inflammatory 
pain and comorbid anxiety symptoms [97]. Additionally, 
GABAergic neurons in the lateral septum were found to 
be hyperactivated under pathological conditions, where 
increased inhibitory output from the lateral septum to 
downstream brain regions contributed to the develop-
ment of pain and anxiety. The GABAergic projections 
from the lateral septum to the lateral hypothalamus were 
particularly significant in regulating comorbid pain and 
anxiety [98]. Overall, disruptions in the glutamatergic 

and GABAergic systems within the central nervous sys-
tem can lead to the onset of chronic pain and mental 
health disorders.

Monoamine  Monoamine neurotransmitters, such as 
5-HT, NE, and dopamine, are essential for the functioning 
of the nervous system [99]. The traditional monoamine 
hypothesis suggests that, alongside common pathogenic 
factors, a deficiency in these neurotransmitters is a pri-
mary contributor to depression [100].

Activation of 5-HT1A autoreceptors leads to reduced 
firing of serotonergic neurons, providing feedback con-
trol over 5-HT synthesis and release [101]. The activation 
of 5-HT1A heteroreceptors on neurons within the SpVc 
decreases the release of glutamate and SP at nocicep-
tive terminals, thereby attenuating pain signals transmit-
ted to the brain [74]. Similarly, the activation of 5-HT1A 
heteroreceptors on GABAergic neurons in brain regions 
reduces GABA-mediated inhibition of dopaminergic 
neurons, enhancing excitatory effects on the reward 
pathway, and thereby exerting an antidepressant effect 
[74]. Females exhibit a higher lifetime prevalence of men-
tal health disorders and TMDs, which may be related 
to the influence of sex hormones on 5-HT [102]. Estro-
gen can regulate 5-HT synthesis, release, reuptake, and 
5-HT1A receptor expression, thereby increasing central 
5-HT levels. Progesterone, on the other hand, reduces 
the expression of the monoamine oxidase gene, increas-
ing 5-HT levels in the synaptic space, which can help alle-
viate depression and pain [102]. In addition, Christidis et 

Fig. 6  Common inflammatory cytokines involved in TMDs and mental health disorders. The background color of the inflammatory cytokines indicates 
the frequency of abnormal changes observed in studies: darker shades represent inflammatory cytokines with a higher frequency of abnormalities, while 
lighter shades indicate lower frequencies. Data from [85, 88, 89]. MMP, matrix metalloproteinase; MCP, monocyte chemoattractant protein; IL, interleukin; 
TNF, tumor necrosis factor; CXCL, chemokine, CXC motif; CCL, chemokine, CC motif; IFN, interferon; TGF, transforming growth factor
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al. discovered that female patients with myofascial TMDs 
had a higher number of putative nociceptors expressing 
the 5-HT3 receptor in the masseter muscle compared to 
healthy female controls, indicating a potential up-regula-
tion of 5-HT3 receptors in myofascial TMDs [103].

The primary source of norepinephrine in the central 
nervous system is the LC-noradrenergic system, which 
becomes dysfunctional in chronic pain, contributing to 
pain amplification [104]. Notably, bilateral elevation of 
noradrenaline in the PFC has been linked to persistent 
pain, suggesting excessive activation of the noradrener-
gic system in chronic pain conditions [105]. Furthermore, 
projections from the LC to the basolateral amygdala are 
implicated in the encoding of traumatic memories, indi-
cating that similar dysregulation may also occur in post-
traumatic stress disorder and chronic pain scenarios 
[106, 107].

The plasma dopamine levels in patients with painful 
TMDs are significantly higher than in healthy individu-
als, and this increase correlates with both pain intensity 
and mental health disorders [108]. Conversely, patients 
exhibit reduced cerebrospinal fluid (CSF) dopamine 
concentrations, likely due to the long-term suppression 
of dopamine responses to pain by elevated tonic lev-
els [108]. Chronic pain has been shown to significantly 
impair mesolimbic dopamine function, leading to dis-
ruptions in motivated behavior [109]. Pharmacologi-
cal interventions that increase synaptic dopamine levels 
can enhance endogenous pain inhibition associated with 
reward and heighten pain facilitation linked to punish-
ment [110]. Disturbances in dopaminergic control are 
associated with a lack of motivation and anhedonia, key 
features of depression [111].

BDNF
BDNF is widely distributed in the central nervous system, 
with particularly high expression in the hippocampus, 
cortex, and prefrontal areas, which is involved in pain 
and mental health disorders [112]. The antinociceptive 
effect of BDNF may be mediated centrally rather than 
peripherally [113]. Wang et al. demonstrated that BDNF 
increased T-type currents by activating TrkB, which 
in turn activated the PI3K-p38-PKA signaling pathway 
[114]. This process led to heightened neuronal excitabil-
ity in TG neurons and contributed to pain hypersensi-
tivity in rats [114]. Additionally, Liu et al. demonstrated 
that BDNF modulated depression and pain in a projec-
tion-specific manner within mesolimbic circuits during 
chronic mild stress (CMS)-induced depression [115]. The 
role of BDNF in the VTA→mPFC pathway was primarily 
reflected in the regulation of depressive-like behaviors, 
where the restoration of BDNF in the mPFC alleviated 
depressive symptoms. In contrast, in the VTA→NAc 
pathway, BDNF primarily influenced the regulation 

of pain, with an increase in BDNF in the NAc enhanc-
ing pain perception [115]. Furthermore, Kim et al. have 
demonstrated that activating the BDNF/TrkB pathway 
in the hippocampus and PFC can ameliorate depres-
sive and anxiety-like behaviors [116]. However, elevated 
BDNF levels in the NAc are linked to the development of 
depression-like behaviors [117].

Neuropeptides
Several neuropeptides, such as CGRP, SP and EOP, play-
ing crucial roles in pain perception, cognitive function, 
and emotional regulation.

Peripheral damage can trigger the release of CGRP by 
neurons in the TG. This released CGRP acts on adja-
cent sensory neurons via paracrine signaling, initiating 
a ganglion inflammatory cascade [118]. In TMDs mouse 
models, Suttle et al. discovered that activating TRPV4-
expressing TG neurons led to the secretion of CGRP. 
This was linked to elevated CGRP levels in the masseter 
muscle, peri-TMJ tissues, the SpVc, and plasma [119]. 
In addition, CGRP heightens anxiety-like behaviors and 
neural activity by inhibiting anterolateral sector of BNST 
(BNST-AL) cells [120].

Upon receiving stimuli from inflammation or injury, 
SP is released and primarily binds to neurokinin-1 recep-
tor (NK1R), which are widely expressed in the central 
nervous system, specifically in the PFC, amygdala, hip-
pocampus, and hypothalamus [60]. SP can enhances the 
effects of glutamate within the synapse, thereby modu-
lating pain. Furthermore, SP activates the sympathetic 
nervous system and the hypothalamic–pituitary–adrenal 
axis, contributing to anxiogenic effects [121].

Trigeminal dynorphin could modulate TMDs-like 
masseter hypersensitivity, highlighting a female-specific 
role in the comorbidity of TMDs and migraine-like pain 
[122]. Research by Feldreich et al. demonstrated that 
reduced plasma β-endorphin levels were correlated with 
decreased TMJ pain following surgery [123]. Addition-
ally, κOR antagonists have potential as novel treatments 
for MDD, especially in individuals who do not respond 
adequately to conventional antidepressants [124].

Brain network
The existence of overlapping brain networks involved in 
pain processing and emotion regulation may provide an 
explanation for the high comorbidity between TMDs and 
mental health disorders. Neuroimaging techniques, par-
ticularly magnetic resonance imaging (MRI), have been 
utilized to identify brain changes. A multimodal meta-
analysis of 320 studies revealed that in MDD, ANX and 
CP, there was a common decrease in gray matter volume 
(GMV) in the dorsomedial PFC, lateral PFC, bilateral 
insula cortex, bilateral ACC, superior temporal gyrus 
(STG), and SMA. However, this analysis did not identify 
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any common increase in GMV or intrinsic Fc changes 
[125]. This section will explore the key brain regions 
overlap involved in TMDs and mental health disorders.

Mental health disorders are characterized by dysregu-
lation across multiple brain regions, which are crucial for 
cognitive and emotional processes. Key areas involved 
include the PFC, the insula cortex, the ACC, the limbic 
system and so on (Supplemental Table 1). Alterations in 
brain function and structure also exist in patients with 
painful TMDs. In addition to the sensory-discriminative 
regions associated with pain, the affective-motivational 
and cognitive-evaluative regions are also involved [126] 
(Supplemental Table 2). There are several overlaps in 
the altered brain regions involved in TMDs and mental 
health disorders (Fig. 7A).

The identified comorbid abnormal pattern largely cor-
responds to the reward processing deficits (Fig.  7B), 
as well as the anomalies in the triple network model 
(Fig. 7C).

Impairments in brain’s reward system, including reward 
deficiency and anti-reward, are common vulnerability 
factors for MDD, anxiety disorders (ANX), and chronic 
pain. These impairments contribute to negative moods, 
heightened anxiety, and reduced pain relief from external 
rewards [27]. The brain’s reward system includes essential 
components such as the striatum, the VTA, the mPFC, 
the amygdala, the orbitofrontal cortex (OFC), and the 
ACC [127]. The striatum is divided into dorsal and ven-
tral regions. The dorsal striatum consists of the caudate 
and the putamen, while the ventral striatum, commonly 

Fig. 7  Overlapping brain networks involved in TMDs and mental health disorders. (A) Overlaps of altered brain regions. The background color of the brain 
regions indicates the frequency of abnormal changes observed in MRI studies: darker shades represent regions with a higher frequency of abnormali-
ties, while lighter shades indicate lower frequencies. (B) Brain reward system. (C) Triple network model. Abbreviations: SpVc, superior parietal lobule; PCC, 
posterior cingulate cortex; SMA, supplementary motor area; S2, secondary somatosensory cortex; ACC, anterior cingulate cortex; PFC, prefrontal cortex; IC, 
insular cortex; Amyg, amygdala; ALIC, anterior limb of the internal capsule; Cereb, cerebellum; HC, hippocampus; NAc, nucleus accumbens; M1, primary 
motor cortex; CC, corpus callosum; TG, temporal gyri; Put, putamen; S1, primary somatosensory cortex; GP, globus pallidus; MCC, middle cingulate cortex; 
IPL, inferior paietal lobule; SPL, superior parietal lobule; IOG, inferior occipital gyrus; FG, fusiform gyrus; PG, parietal gyri; mPFC, medial prefrontal cortex; 
OFC, orbitofrontal cortex; Cau, caudate; VS, ventral striatum; VTA, ventral tegmental area; vmPFC, ventral medial prefrontal cortex; AG, angular gyrus; Pcun, 
precuneus; dlPFC, dorsolateral prefrontal cortex; PPC, posterior parietal cortex; AI, anterior insula cortex
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referred to as the NAc, plays a key role in dopamine-
mediated behaviors such as reward and pleasure [128]. 
Both regions receive dopamine signals from the mid-
brain, specifically from the VTA, which is involved in 
processing pain and regulating emotion [129]. Frauke et 
al. found that dorsal striatum responses associated with 
anhedonia and impaired reward processing might predict 
the onset of chronic pain, regardless of genetic predispo-
sition [130]. There was also a decrease in GMV in the left 
putamen, along with decreased dynamic FC between the 
left putamen and the ACC in TMDs patients [131]. How-
ever, the decrease in GMV in NAc in TMDs patients was 
not significant [131]. Furthermore, Chen et al. discovered 
that abnormal functional connectivity (Fc) within the left 
striatal-orbitofrontal pathway could serve as a mediator 
linking pain and depressive symptoms in patients with 
TMDs [132]. In MDD, there was a reduction in GMV in 
the bilateral anterior cingulate cortex and right striatum, 
while in ANX, there was a decrease in GMV in the left 
striatum and amygdala [133]. Ding et al. found decreased 
FC within the reward system in recurrent MDD [134]. 
Furthermore, Bore et al. conducted an analysis of evi-
dence derived from neuroimaging meta-analyses and 
discovered that both adults and adolescents diagnosed 
with depression demonstrated reductions in activity 
within the caudate and subgenual ACC [135]. In addition, 
Zhou et al. found that a significant negative correlation 
between the pgACC-caudate hypoconnectivity and per-
centage of female MDD patients [136].

The triple network model of psychopathology, which 
includes the salience network (SN), central executive 
network (CEN), and default mode network (DMN), was 
first proposed by Menon in 2011 [137]. The SN plays a 
crucial role in regulating the switch between the brain’s 
two primary control networks: the DMN, associated with 
internal processing, and the CEN, associated with exter-
nal processing. In a healthy brain, these two networks 
are not simultaneously active or operating. The key 
functional regions of the SN are primarily located in the 
ACC, anterior insula cortex (AIC), and pre-SMA [138]. 
Hyperactivity of the SN is associated with both physi-
cal and psychological vulnerabilities. Specifically, exces-
sive activity in the AIC-dorsal ACC pathway is primarily 
related to emotional disorders, particularly heightened 
anxiety and neuroticism [139]. In individuals with 
depression, responses to negative stimuli are character-
ized by increased activity in the AIC, ACC, and amygdala 
[140]. Furthermore, activation of the ACC, insula cortex, 
and S1 is commonly observed in cases of orofacial pain 
[141]. The AIC, which serves a central role within the SN 
consists of three distinct regions, each with specialized 
functions: the posterior AIC is involved in sensorimo-
tor processing, the dorsal AIC participates in cognitive 
control and redirects information to the dlPFC -posterior 

parietal cortex loop, and the ventral AIC is engaged in 
affective processes, directing affective stimuli to spe-
cific areas within the limbic cortex and mPFC [138]. The 
mPFC and insula cortex are also involved in both the 
learning and persistence of threat responses and their 
regulation [142, 143]. In patients with TMDs, the levels 
of anxiety and perceived pain were associated with varia-
tions in individual insula activity [144, 145].

The DMN comprises several key brain regions, includ-
ing mPFC, the posterior cingulate cortex (PCC)/pre-
cuneus, inferior parietal lobule, and bilateral temporal 
cortex [146]. In the brain’s resting state, when it is not 
actively engaged in focused, goal-directed tasks, the 
activity of the DMN increases, facilitating the processing 
of internal thoughts [147]. Dysfunctions in the DMN may 
be linked to cognitive and behavioral impairments seen 
in painful TMDs patients [148]. Kuyci et al. used fMRI to 
show that painful TMDs patients who frequently rumi-
nated on pain exhibited increased Fc between the mPFC 
and various DMN regions, such as PCC/precuneus, ret-
rosplenial cortex, and parts of the visual cortex [149]. 
Additionally, DMN dysregulation, which is mediated by 
key aspects of depression-related cognitive impairment, 
serves to underpin the neurobiological risk for recurrent 
depression [150]. In a meta-analysis, Briley et al. identi-
fied reduced connectivity between the amygdala and 
the DMN in patients with anxiety and depression [151]. 
Furthermore, in patients with recurrent MDD, disrupted 
NAc FCs in the DMN were observed [134].

The CEN comprises primarily the dlPFC and poste-
rior parietal cortex, critical for executing functions and 
demanding cognitive tasks aligned with specific goals. 
Among patients with TMDs, the corpus callosum exhib-
ited increased FC with the frontal pole but decreased 
connectivity with the dlPFC [152, 153]. Chen et al. 
discovered reduced FC between the dlPFC and the 
amygdala, along with abnormal FC in the left striatal-
orbitofrontal pathway, potentially mediated the relation-
ship between pain and depressive symptoms, possibly 
due to a greater engagement in internally-directed cog-
nitive processes [132]. Additionally, Picó-Pérez et al. 
observed that individuals with anxiety disorders engage 
the regulatory CEN to a certain extent during cognitive 
reappraisal, albeit with reduced activation levels [154]. 
Moreover, Xu et al. noted hypo-connectivity between the 
affective network and both CEN and the DMN, alongside 
a disconnection of CEN from DMN [155]. In patients 
with comorbid anxiety and MDD, decreased FC was 
detected not only between the amygdala and both DMN 
and CEN, potentially associated with feelings of low 
mood, impaired concentration, and heightened sensitiv-
ity to negative stimuli [151].

Recent studies employing MR analyses have sought 
to explore the causal relationships between brain 
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resting-state networks (RSNs) dysfunctions and TMDs 
or mental health disorders. For example, Lin et al. found 
that, in the forward MR analysis, specific brain regions 
like the left caudal middle frontal gyrus (reduced thick-
ness) and the right superior frontal gyrus (increased 
GMV) demonstrated significant causal effects on TMDs 
[156]. In the reverse MR analysis, TMDs showed nota-
ble causal impacts on various brain regions, including 
the left medial orbitofrontal cortex (reduced thickness), 
left magnocellular nucleus (reduced volume), and the 
right inferior-lateral ventricle (reduced intensity) [156]. 
Furthermore, the anterior division of the left superior 
temporal gyrus exhibited increased GMV due to TMDs 
[156]. Regarding mental health disorders, Huang et al. 
identified that structural connectivity within the limbic 
network, characterized by increased white matter integ-
rity, might serve as an etiological factor for depression. 
However, they did not find evidence supporting a causal 
effect of depressive disorders on the structural connec-
tivity of the limbic network [157]. Additionally, Zanoaga 
et al. reported that a reduced area of the right PCC and 
decrease in GMV in the right anterior STG directly affect 
ANX [158]. It is essential to acknowledge that these find-
ings may not be universally generalizable across diverse 
populations or conditions, given their context specificity.

Clinical therapy
The etiology of TMDs is biopsychosocial and multifac-
torial, necessitating the adoption of a comprehensive 
approach to their management [4]. The comorbidity 
between TMDs and mental health disorders implies that 
treating TMDs could have positive effects on mental 
health, and conversely, managing mental health condi-
tions could help reduce TMDs symptoms. Present clini-
cal interventions vary; some aim at relieving TMDs 
symptoms specifically, while others target mental health 
improvement. Moreover, certain therapeutic strategies 
can effectively address symptoms of both TMDs and 
mental health disorders (Fig. 8).

Impact of TMDs treatment on mental health
Treatment for TMD symptoms typically includes a com-
bination of non-invasive interventions, such as physical 
modality therapy, manual therapy, therapeutic exercises, 
and occlusal splints. While invasive interventions, such 
as open TMJ surgery, arthroscopy, and minimally inva-
sive muscular and intra-articular injections [159], may 
be considered in more severe or refractory cases, non-
invasive treatments are often the first-line approach for 
most patients [4]. A guideline analysis has identified 
moderate to high-level evidence supporting the effec-
tiveness of several interventions for managing moderate 
chronic pain associated with TMDs [160]. These inter-
ventions include cognitive behavioral therapy (CBT), 

therapist-assisted mobilization, manual trigger point 
therapy, supervised postural exercises, and supervised 
jaw exercises and stretching. The guideline strongly rec-
ommends these interventions for adult patients suffering 
from moderate chronic pain, measured at 4 to 6 cm on 
a 10 cm pain scale. It is well known that reducing symp-
toms of disease can reduce pain, restore normal social 
functioning, and consequently improve mental health. 
In a five-year follow-up study of 234 participants with 
chronic TMDs, results showed that 49% of participants 
achieved complete recovery, while 14% reported more 
than a 50% reduction in pain [161]. Participants who 
were pain-free at the five-year mark had consistently low 
levels of psychopathology from baseline to follow-up 
[161]. Those who experienced at least a 50% reduction in 
pain initially had higher levels of depression, anxiety and 
somatization, but these psychological symptoms showed 
significant improvement over the follow-up period [161].

Current clinical trials primarily assessed outcomes 
related to pain intensity, mechanical sensitization, and 
mandibular function [162, 163]. However, numerous 
studies indicated a weak association between the reduc-
tion of pain intensity and the success of treatments for 
TMDs [164, 165]. In contrast, other research highlighted 
a stronger association between treatment success and 
factors such as jaw movements, patient characteristics, 
and comorbidities, including depression, anxiety, and 
somatization [164, 165]. Therefore, a multidimensional 
approach to evaluating treatment outcomes is essen-
tial, encompassing behavioral, psychosocial, and mental 
health aspects [163–166].

Effectiveness of mental health interventions on TMDs
The biopsychosocial model serves as a crucial frame-
work for understanding the complex nature of chronic 
pain and informing care strategies. Within this model, 
psychological processes are identified as key factors that 
influence both risk and resilience. This emphasis has 
prompted extensive research into psychological interven-
tions designed to alter the underlying processes associ-
ated with pain, distress, and disability [167].

Cognitive behavioral therapy (CBT) can improve the 
dysfunction of brain regions associated with pain pro-
cessing, including the PFC, ACC, insula cortex, and 
amygdala [168]. Moreover, CBT enhances top-down pain 
control by releasing neurotransmitters such as opioids, 
5-HT, and NE, which inhibit nociceptive signaling [169]. 
A recent RCT suggested that repetitive CBT delivered 
via smartphone applications might help alleviate clinical 
symptoms in TMDs patients [170]. A systematic review 
of RCTs (primarily CBT-based) found CBT might reduce 
pain intensity more than alternative therapies (e.g., oral 
appliances, medication) or controls at long-term follow-
up, but not post-treatment. For pain disability outcomes, 
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CBT showed no significant advantage over other treat-
ments or controls [171]. However, these observations 
could not overcome the overarching limitation of low-
certainty evidence; therefore, current evidence remains 
insufficient to confirm the efficacy of CBT for painful 
TMDs [171]. High-quality RCTs are required to estab-
lish effectiveness. In addition, the CBT protocol requires 
refinement to enhance its effectiveness in treating TMDs. 
It should not only focus on managing negative emotions 
but also address kinesiophobia, cognitive distortions, and 
deficiencies in reward mechanisms [172]. This compre-
hensive approach is essential for improving treatment 
outcomes.

In addition to CBT, mindfulness practices and 
pain neuroscience education (PNE) are significant 
mental health interventions. Neuroimaging studies 
have explored the neurological mechanisms behind 

mindfulness, highlighting brain regions such as the PCC 
that are involved in self-referential processing [173]. 
A RCT conducted in India with chronic patients dem-
onstrated that mindfulness positively influenced pain 
intensity, pain acceptance, and perceived stress [174]. In 
addition, a meta-analysis showed that while mindfulness-
based interventions were not superior to traditional cog-
nitive-behavioral therapies for chronic pain, they were 
valuable alternatives [175]. Recent meta-analyses indi-
cated that PNE durations of 100, 200, and 400 min were 
found to surpass the minimum clinically important dif-
ferences for reducing kinesiophobia, anxiety symptoms, 
and catastrophizing [176]. These findings suggest that 
clinicians can use PNE to provide tailored education that 
helps patients reconceptualize pain and address pain-
mediating factors, possibly by adjusting the duration of 
PNE based on specific clinical goals.

Fig. 8  Clinical therapy for managing TMDs symptoms and mental health disorders
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Psychological treatments demonstrated comparable 
efficacy to standard interventions (e.g., occlusal appli-
ances, pharmacological approaches, jaw exercises) in 
reducing TMDs-related pain intensity, as evidenced in a 
recent meta-analysis [177]. However, combining psycho-
logical treatments with standard approaches appeared to 
yield even better results. This suggested that psychologi-
cal therapies could serve as a promising supplementary 
treatment option for painful TMDs [177]. Nevertheless, 
further high-quality RCTs are required to validate these 
findings. In addition, future psychological research on 
chronic pain should consider adopting a more individu-
alized and process-oriented approach, which focuses on 
theoretically grounded and evidence-supported mecha-
nisms of change.

Therapeutic approaches for managing TMDs symptoms 
and mental health disorders
Previous methods primarily focused on TMDs symptoms 
or mental health disorders. The following approaches will 
each address both TMDs symptoms and mental health 
disorders through similar or different pathways.

In addition to the injectable medications previously 
mentioned, several oral medications are available for 
the treatment of TMDs and mental health disorders. 
These include non-steroidal anti-inflammatory drugs 
(NSAIDs), muscle relaxants, anticonvulsants, antide-
pressants, and corticosteroids. A systematic review sug-
gested that for painful TMDs of musculoskeletal origin, 
evidence supported the use of therapies such as botuli-
num toxin, granisetron, platelet-rich plasma, and muscle 
relaxants, while for painful TMDs of arthrogenous origin, 
pharmacological approaches like NSAIDs, glucocorti-
costeroids, hyaluronic acid, and dextrose were effective 
[178]. Antidepressants can modulate pain perception 
and transmission. Their primary mechanism of action 
involves increasing the inhibition of afferent pathways to 
the supraspinal and spinal regions, as well as enhancing 
the levels of NE and 5-HT at the synaptic junction [179]. 
Consequently, antidepressants possess analgesic proper-
ties that operate independently of their mood-regulating 
effects. Barakat et al. reviewed the potential of fluoxetine 
in managing nociceptive pain, particularly when com-
bined with morphine [180]. Pain often comes with other 
symptoms, and antidepressants can also help with mus-
cle relaxation, mood enhancement, and improved sleep 
quality [181]. Furthermore, antidepressants exhibit anti-
inflammatory effects. A 26-week study on patients with 
depression found significant reductions in 17 out of 27 
inflammatory markers during treatment [182]. However, 
the risk of side effects underscores the necessity for cau-
tious use of these medications.

Biofeedback is a technique that provides patients 
with real-time biological information, allowing them to 

respond effectively and mitigate negative effects [183]. A 
RCT examined the efficacy of a full-occlusion biofeed-
back splint in treating sleep bruxism and TMDs. The 
study revealed a statistically significant reduction in both 
the frequency and duration of bruxing activity [184]. 
Furthermore, the intervention led to a decrease in pain 
experienced in the masticatory muscles. Beyond its appli-
cations in physical health, biofeedback is also employed 
in the treatment of mental health disorders. It has proven 
to be an effective intervention for individuals with MDD 
and depressive symptoms, despite its relatively mod-
est impact on these symptoms. In addition to traditional 
techniques such as electromyography (EMG) biofeed-
back, innovative approaches like gamified biofeedback on 
mobile devices have emerged as tools for stress manage-
ment [185].

Acupuncture, a traditional Chinese medicine practice, 
involves inserting fine needles into targeted acupoints to 
achieve therapeutic outcomes. The choice of acupoints 
is tailored to the specific condition being addressed. It 
is frequently used in managing chronic pain and is also 
known to reduce stress and anxiety by promoting relax-
ation. In a double-blind RCT by Liao et al., the effective-
ness of acupuncture tailored for pain and depression 
was examined. The study demonstrated that both types 
of acupoints were effective in treating patients with co-
occurring pain and depression [186].

Good sleep quality is a crucial factor in mental health 
and effective pain management. A prospective cohort 
study revealed that patients with obstructive sleep apnea 
(OSA) experienced notable reductions in the inten-
sity of pain-related TMDs and headaches attributed to 
TMDs after 18 months of OSA treatment [187]. How-
ever, as a non-randomized study, potential selection bias 
and confounding factors might limit causal conclusions. 
Further RCTs are required to validate these findings. Fur-
thermore, a meta-analysis encompassing 65 trials and 
8,608 participants found that improving sleep positively 
impacted mental health, irrespective of the severity of 
mental health difficulties or the presence of comorbid 
conditions [188].

Conclusion
A substantial body of evidence from epidemiologi-
cal studies supports the association between TMDs 
and mental health disorders. This review has explored 
the mechanisms through which these conditions can 
adversely affect each other. Potential shared vulnerabili-
ties between TMDs and mental health disorders may 
arise from genetic and epigenetic predispositions, as 
well as psychosocial and behavioral factors. Additionally, 
there is considerable overlap in pathophysiology mecha-
nisms and brain regions involved in both conditions, 
suggesting a biological basis for their mutual influence. 
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Treatment approaches informed by these mechanisms 
have shown promising results, although definitive causal 
relationships and the specific mediating and moderating 
factors remain underexplored. Therefore, future prospec-
tive research is necessary to further elucidate the causal 
pathways between TMDs and mental health disorders.

Effective treatment requires a multidisciplinary 
approach. Healthcare professionals from various disci-
plines, such as neurology, pain medicine, psychiatry, psy-
chology, otolaryngology, and physical therapy, should be 
involved. This collaboration ensures a holistic treatment 
plan that addresses the complexity of both TMDs and 
mental health disorders. Moreover, prioritizing person-
alized medical interventions that address both physical 
and mental health is crucial. Individualized treatment 
involves tailoring nursing and management strategies to 
align with each patient’s clinical condition and psycho-
logical characteristics. This approach not only enhances 
patient comfort and compliance but also promotes early 
and sustained recovery. In addition, it is of great impor-
tance to adopt conservative, personalized, and non-
invasive treatment methods due to the psychological 
vulnerability of TMDs patients [189]. Avoiding irrevers-
ible interventions is crucial, as excessive or inappropriate 
treatments may worsen the condition [190, 191].

In summary, while current evidence underscores the 
interconnectedness of TMDs and mental health disor-
ders, further research is required to gain a comprehen-
sive understanding of the underlying mechanisms and 
to optimize treatment strategies. A multidisciplinary, 
individualized approach remains the most effective path 
forward, ensuring that each patient’s unique needs and 
circumstances are met.
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