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Abstract
Background Finding a biomarker to diagnose migraine remains a significant challenge in the headache field. 
Migraine patients exhibit dynamic and recurrent alterations in the brainstem-thalamo-cortical loop, including 
reduced thalamocortical activity and abnormal habituation during the interictal phase. Although these insights into 
migraine pathophysiology have been valuable, they are not currently used in clinical practice. This study aims to 
evaluate the potential of Artificial Neural Networks (ANNs) in distinguishing migraine patients from healthy individuals 
using neurophysiological recordings.

Methods We recorded Somatosensory Evoked Potentials (SSEPs) to gather electrophysiological data from low- and 
high-frequency signal bands in 177 participants, comprising 91 migraine patients (MO) during their interictal period 
and 86 healthy volunteers (HV). Eleven neurophysiological variables were analyzed, and Principal Component Analysis 
(PCA) and Forward Feature Selection (FFS) techniques were independently employed to identify relevant variables, 
refine the feature space, and enhance model interpretability. The ANNs were then trained independently with the 
features derived from the PCA and FFS to delineate the relationship between electrophysiological inputs and the 
diagnostic outcome.

Results Both models demonstrated robust performance, achieving over 68% in all the performance metrics 
(accuracy, sensitivity, specificity, and F1 scores). The classification model trained with FFS-derived features performed 
better than the model trained with PCA results in distinguishing patients with MO from HV. The model trained with 
FFS-derived features achieved a median accuracy of 72.8% and an area under the curve (AUC) of 0.79, while the 
model trained with PCA results showed a median accuracy of 68.9% and an AUC of 0.75.

Conclusion Our findings suggest that ANNs trained with SSEP-derived variables hold promise as a noninvasive tool 
for migraine classification, offering potential for clinical application and deeper insights into migraine diagnostics.
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Background
Migraine is highly prevalent worldwide [1], representing 
one of the leading causes of disability among individu-
als younger than 50 years old and the first cause in young 
women [2]. Despite the great interest in finding a bio-
marker, this remains a challenge in the headache field [3], 
and migraine diagnosis still relies on clinical criteria [4]. 
However, clinical criteria do not fully capture migraine 
heterogeneity, and advanced diagnostic methods based 
on migraine neurobiology and neurophysiology are nec-
essary to offer deeper phenotyping and personalized 
treatments [3]. Electrophysiological techniques could 
be valuable for this purpose, as they allow noninvasive 
study of neuronal excitability and have proven their util-
ity in understanding migraine pathophysiology. Several 
studies have provided evidence that individuals with 
migraine exhibit dynamic and recurrent alterations in the 
brainstem-thalamo-cortical loop, which varies cyclically 
and recurrently during the migraine cycle [5]. The most 
consistent alterations were observed during the interictal 
phase, with almost all the non-painful evoked potentials. 
They included dysfunctions in habituation mechanisms 
from repetitive stimulations and reduced thalamocortical 
activity, both reverted during the ictal phase when sen-
sitization develops [6]. However, these alterations were 
often reported as differences at the group level and are 
not currently used in clinical practice [7].

In the last years, machine learning (ML) algorithms 
have rapidly evolved leading to breakthroughs in various 
fields, including headache. The application of ML algo-
rithms to neurophysiological data analysis has yielded 
promising results, achieving good accuracy in classify-
ing individuals with episodic migraine [8] and chronic 
migraine [9, 10]. Considering the abnormal processing of 
sensory stimuli in migraine [11], examining the somato-
sensory system through evoked potentials, combined 
with ML techniques, could be an effective approach for 
classifying individuals with this condition [9, 12, 13].

This study aims to evaluate the potential of Artificial 
Neural Networks (ANNs) in distinguishing interictal epi-
sodic migraine patients from healthy individuals using 
neurophysiological data obtained from somatosensory 
evoked potentials (SSEPs) recordings. Applying ANNs 
to neurophysiology recordings can enhance the under-
standing of migraine neurophysiology and promote the 
development of a generalizable tool for classifying indi-
viduals with migraine in routine clinical practice.

Materials and methods
Participants
Adults (aged ≥ 18 years and ≤ 65 years) who received a 
diagnosis of episodic migraine without aura (MO) were 
recruited from the Headache clinic of the Sapienza Uni-
versity of Rome (Polo Pontino, ICOT, Latina). MO was 

diagnosed according to the International Classification 
of Headache Disorders third edition (ICHD-III) [4]. All 
patients received the headache diary via email at least 
one month before their screening visit. Key exclusion cri-
teria were more than 15 headache days per month, medi-
cation overuse (defined as for ICHD-III), coexistence of 
other types of primary or secondary headaches, comor-
bidity with any other neurological or psychiatric disor-
der, prophylactic migraine medications in the previous 
three months or regular use of other medications (except 
for contraceptive pills). Healthy volunteers (HV) with no 
personal or familial history (first- and second-degree rel-
atives) of migraine, no regular medication intake except 
for the contraceptive pill, and no other overt medical 
condition were recruited from medical school students 
and healthcare professionals at Sapienza University of 
Rome (Polo Pontino). The study was conducted in accor-
dance with the Declaration of Helsinki and approved by 
the local ethics review board. After receiving a compre-
hensive study description, all participants provided writ-
ten informed consent.

SSEPs recordings and analysis
All the patients were recorded during their interictal 
period (at least 3 days before and after a migraine attack). 
To reduce variability from hormonal effects on cortical 
excitability, we managed to schedule recording sessions 
of female subjects outside their premenstrual or men-
strual phases. Participants were instructed to sit relaxed 
and with their eyes open in a comfortable chair and focus 
on the induced movement of their thumb. All recordings 
were conducted in the same laboratory during the after-
noon (between 2 p.m. and 6 p.m.). SSEPs were elicited by 
stimulating the right median nerve at the wrist with con-
stant-current square wave pulses (0.2 ms width, cathode 
positioned proximally) and a repetition rate of 4.4 Hz. 
The intensity was set at 1.2 times the motor threshold. 
The SSEP signals were recorded over the contralateral 
parietal area (C3’, 2  cm posterior to C3 in the Interna-
tional 10–20 system) and referenced to Fz, with the 
ground electrode positioned on the left wrist. The CED™ 
power 1401 device (Cambridge Electronic Design Ltd, 
Cambridge, UK) was used to record the signals, while 
amplification was performed with the Digitimer™ (Digi-
timer Ltd, UK) (band-pass 0.05–2500 Hz, Gain 1000).

Low-frequency SSEPs (LF-SSEPs)
Six hundred consecutive sweeps of 50 ms sampled at 
5000  Hz were recorded. The Signal™ software pack-
age version 4.10 (CED Ltd) was used to analyze all the 
recordings offline. Artifacts were identified using the Sig-
nal™ artifact rejection tool. Any signal amplitude exceed-
ing 90% of the analog-to-digital converter (ADC) range 
was excluded, and all the rejections were controlled by 
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visual inspection. Additionally, all the recorded signals 
were visually inspected, and artifacts, blink, and eye 
movements were manually rejected. To avoid affecting 
the habituation calculation, recordings with more than 5 
artifacts per 100 sweeps were discarded. However, none 
of the recordings exceeded this threshold. After remov-
ing the artifacts, we obtained at least 95 artifact-free 
sweeps for every 100 responses, resulting in a total of at 
least 570 artifact-free evoked responses for each subject. 
Low-frequency responses (LF-SSEPs) were obtained by 
digitally filtering the signals between 0 and 450 Hz.

All the artifact-free evoked responses per subject were 
averaged, and latency and amplitude of the N20, P25, 
and N33 components were calculated for each subject. 
The initial 300 traces obtained were also divided into 
three blocks of 100 sweeps each, and the peak-to-peak 
amplitude of each block of responses was measured (1st, 
2nd, and 3rd block). The habituation was calculated as in 
our previous works by computing the linear regression 
between the N20-P25 amplitudes of the first and second 
blocks (Slope 1–2) and between the first and third blocks 
(Slope 1–3) [14, 15].

High-frequency oscillations (HFOs)
The extraction of high-frequency oscillations was con-
ducted on the parietal N20 LF-SSEP component using a 
digital zero-phase shift band-pass filtering between 450 
and 750  Hz (Barlett-Hanning window, 51 filter coeffi-
cients). Two distinct bursts of HFO were identified based 
on their decreasing amplitude and frequency: the early 
pre-synaptic burst (pre-HFO), which occurred during the 
ascending slope of the conventional N20 component, and 
the late post-synaptic (post-HFO), which was observed in 
the descending slope of N20 component and sometimes 
extended into the ascending slope of the N33 peak. When 
it was not possible to distinguish between these two com-
ponents, the burst that appeared before the N20 peak 
was considered pre-HFO, while the burst occurring after 
this peak was classified as post-HFO. The stimulus arti-
fact was removed from all traces, and the latency of the 
negative oscillatory maximum (pre-HFO lat, post-HFO 
lat) and the maximum peak-to-peak amplitude (pre-HFO 
amp, post-HFO amp) for both bursts were measured.

Statistical analysis
Jamovy software (version 2.5.2) was employed for all the 
classical statistical analyses. Shapiro-Wilk test was used 
to assess the normal distribution of data. Neurophysi-
ological data were compared between the two groups 
using an independent sample t-test for normally distrib-
uted data and a Mann-Whitney U test for non-normally 
distributed data. The Chi-square (χ²) test was used to 
investigate homogeneity between categorical variables. A 
p-value < 0.05 was considered statistically significant.

Artificial neural network
From the SSEP analysis, we selected the following 11 
neurophysiological features for the model: amplitudes 
of grand-average N20-P25 and P25-N33, amplitudes of 
the 1st block, 2nd block, and 3rd block of 100 responses, 
Slope 1–2, Slope 1–3, pre-HFO latency, pre-HFO ampli-
tude, post-HFO latency, and post-HFO amplitude. With 
this initial set of 11 features, reducing the dimensionality 
of the data is crucial before the ANNs development. This 
process allows the retention of the most critical informa-
tion, simplifies the model, and reduces the risk of over-
fitting and the computational burden on the subsequent 
machine learning algorithms [16]. Two techniques were 
independently applied to reduce the dimensionality and 
select the relevant features from our data set: Principal 
Component Analysis (PCA) and Forward Feature Selec-
tion (FFS).

Before applying both techniques, all data were stan-
dardized to reduce PCA and FFS sensitivity to the mag-
nitude of the features. The standardization of the features 
ensures that each feature contributes equally to the 
model and prevents features with larger magnitudes from 
dominating the learning process (Eq. 1). This ensures that 
all features contribute equally to the analysis:

 
Xstandardized = X − µ

σ
 (1)

where X is the original feature value, µ is the mean, and σ 
is the standard deviation.

Furthermore, this process helps with ANN’s training. 
Indeed, standardizing the features helps when using acti-
vation functions that output values between − 1 and 1, 
such as the tanh function (e.g., hyperbolic tangent acti-
vation). These activation functions work best when the 
input values are centered around zero and within a cer-
tain range [17].

Principal component analysis (PCA)
PCA is a widely used statistical technique that transforms 
a large set of variables into a smaller one that is a linear 
combination of the original variables. PCA achieves this 
by identifying the directions (principal components) in 
which the variance of the data is maximal. Furthermore, 
these principal components are uncorrelated with each 
other. This orthogonality property makes the components 
independent and simplifies the relationships between 
variables. To achieve this, the PCA involves the computa-
tion of eigenvalues and eigenvectors from the covariance 
matrix of the original variables. The eigenvalues indi-
cate the amount of variance captured by each principal 
component, while the eigenvectors represent the direc-
tions of the principal components in the feature space. 
Then, it is important to note that PCA does not select 
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individual features; instead, it reduces the dimensional-
ity of the dataset by defining linear combinations of the 
original variables. In particular, the method transforms 
the original features into a new coordinate system where 
the greatest variance by any projection of the data comes 
to lie on the first coordinate (principal component), the 
second greatest variance on the second coordinate, and 
so on. To select the number of principal components, a 
common approach is to retain enough components to 
explain a significant amount of the total variance. For 
readers interested in further exploring the topic of PCA, 
they can refer to the work of Joliffe et al. [18].

In this study, the selection of principal components was 
guided by the goal of maintaining the balance between 
dimensionality reduction and preserving sufficient vari-
ance (95% of the data) to accurately classify whether a 
patient has migraine or not. The selected principal com-
ponents were then used as input features to train the 
ANN. Moreover, to reinforce our decision to use only the 
selected principal components as inputs for the neural 
network, we trained the network with different configu-
rations of principal components. Specifically, we began 
by using only the first principal component, then added 
the second component, followed by the third, and so on. 
For each configuration, we evaluated the accuracy of the 
network in classifying between MO and HV for each 
configuration. To account for the inherent randomness 
in the training process, we trained and assessed a total of 
100 neural networks per configuration. The goal was to 
achieve maximum accuracy while using the fewest possi-
ble principal components, ensuring that they still explain 
95% of the data variance.

Forward feature selection (FFS)
The FFS is a systematic approach for identifying the most 
relevant features for a classification task. The procedure 
employed to obtain results using the FFS methodology 
can be conceptually compared to that of PCA. However, 
in contrast to PCA, which transforms the original feature 
values into a new set of uncorrelated components, the 
FFS methodology directly assists in identifying the most 
relevant input features for the neural network without 
applying any transformations to the original feature val-
ues. In particular, FFS helps create a simpler, more inter-
pretable, and more effective model, by iteratively adding 
features that improve model performance. The selected 
features provide key insights into the variables that most 
significantly contribute to the classification, enhancing 
both the model’s performance and its practical utility. 
The process began with an empty model, iteratively add-
ing one feature at a time based on the improvement in a 
predefined performance metric. In this study, the ANN 
was used as the model to perform FFS, and the accuracy 
was used as the predefined performance metric. At each 

step, the feature that provided the best improvement was 
selected, and the process was repeated until all features 
were considered. At the end of this iterative addition, the 
optimal feature set was identified. To ensure robustness, 
we repeated the FFS technique a hundred times to evalu-
ate the frequency with which each feature was selected 
in the optimal feature set. The features that were most 
frequently selected were then chosen as the final features 
for the ANN (frequency > 50%). This repeated evaluation 
helped in identifying the most consistently important 
features, ensuring that the final model is both reliable and 
effective in distinguishing between MO and HV. For fur-
ther reading on FFS, see the referenced study [19].

Artificial neural network design
The ANNs employed in this study is a multilayer per-
ceptron neural network designed to classify MO and 
HV based on neurophysiological data derived from 
SSEP recordings. The construction of the ANN model 
involved the following steps: development of the archi-
tecture (input and output layers, hidden layer, and activa-
tion functions), training, tuning the hyperparameter, and 
performance evaluation. The architecture of the ANN 
consisted of three main components: input, hidden, and 
output layers. The input layer received the transformed or 
selected features from the PCA or FFS processes, respec-
tively (Fig. 1). The hidden layer comprised one layer of 50 
neurons, which is critical for capturing complex patterns 
and relationships in the data. The hyperbolic tangent 
activation function was applied to introduce non-linear-
ity, enhancing the model’s ability to learn from the data. 
The output layer consisted of two neurons with a softmax 
activation function, producing a probability score that 
indicates the likelihood of subjects being MO or HV. The 
training was performed using either the transformed fea-
tures from PCA or the selected features from FFS. The 
training process involved optimizing the weights and 
biases of the network to minimize the error between 
predicted and actual classifications. This was achieved 
using the scaled conjugate gradient backpropagation 
algorithm, which is effective for training large networks 
and reducing computational complexity. The dataset was 
then divided into training (65%), validation (20%) and 
test (15%) sets [16]. The training set was used to learn the 
model parameters, the validation set was used to monitor 
performance and prevent overfitting, and the test set was 
used to evaluate the final model’s generalization ability. 
The cross-entropy performance metric quantified the dif-
ference between predicted probabilities and actual binary 
labels, guiding the optimization process.

Furthermore, hyperparameter tuning was employed 
to achieve the optimal model performance. Key hyper-
parameters, such as the number of hidden layers, the 
number of neurons per layer, learning rate (0.01), batch 



Page 5 of 14Sebastianelli et al. The Journal of Headache and Pain           (2025) 26:67 

size (18), and the number of epochs (50), were system-
atically explored using a manual approach. This exhaus-
tive search helped to identify the best combination of 
hyperparameters that minimize the validation loss and 
maximize the model’s accuracy. Early stopping was also 
employed to terminate training when the validation loss 
ceased to improve, thus preventing overfitting. For read-
ers interested in the details of mathematical formulations 
that explain how ANNs work, they can refer to the work 
published by Secci et al. [20].

Finally, the outcomes were derived by averaging the 
outputs from 100 neural networks trained on the same 
dataset. For each run, the dataset was randomly divided 
into training, validation, and test sets, introducing vari-
ability into the model training process. Additionally, the 
random initialization of weights further contributed 

to the variation in each network’s performance. Con-
sequently, the neural networks yielded slightly differ-
ent results. We used more than one network to capture 
the uncertainty in the results, providing a comprehen-
sive evaluation of the model’s robustness. This approach 
ensures that the results are both reliable and indicative of 
the model’s true performance in distinguishing between 
MO and HV. To ensure a robust and stable assessment, 
the ANN’s performance was evaluated using key met-
rics, reporting the median values (derived from the 100 
runs) instead of the mean to minimize the impact of out-
liers and skewed distributions. The metrics used for this 
evaluation include median accuracy, sensitivity (recall), 
specificity, and F1 score, calculated as follows:

 Accuracy = (TP + TN) / (TP + TN + FP + FN) (2)

Fig. 1 Pipeline of the Artificial Neural Network (AANs) development. Somatosensory evoked potentials (SSEPs) were recorded by stimulating the median 
nerve at the wrist in both healthy volunteers (HV) and interictal episodic migraine patients (MO). The recordings were analyzed offline to extract low-
frequency responses (LF-SSEPs) and high-frequency oscillations (HFO) from the cortical components of the somatosensory evoked potentials. Eleven 
features were extracted from the analysis, and two techniques were independently applied to reduce the dimensionality and select the relevant features: 
Principal Component Analysis (PCA) and Forward Feature Selection (FFS). PCA selected four relevant linear combinations of the features, while FFS 
selected three relevant features. Two different neural network models were trained with these features transferred to the input layer. The hidden layer 
comprised 50 neurons, while the output layer comprised 2 neurons. Both models were trained one hundred times by randomly dividing our dataset into 
training, validation, and test sets for each run. Finally, the performance of both models in classifying HV from MO was evaluated by calculating the median 
accuracy, the sensitivity (recall), the specificity, and the F1 score. The outcomes were derived by averaging the outputs from 100 neural networks trained 
on the same dataset. Created in BioRender. Sebastianelli, G. (2025)  h t t p s :   /  / B i o R e  n d e   r . c  o  m /  l 6  7 q 6 5 9

 

https://BioRender.com/l67q659
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 Sensitivity (Recall) = TP / (TP + FN) (3)

 Specificity = TN / (TN + FP) (4)

 Precision = TP / (TP + FP) (5)

 F1 Score = 2 ∗ (Precision ∗ Recall) / (Precision + Recall) (6)

where TP (True Positives) are the MO patients correctly 
identified as MO, TN (True Negatives) are HV correctly 
identified as HV, FP (False Positives) are HV incorrectly 
identified as individuals with MO, and FN (False Nega-
tives) are MO patients incorrectly identified as HV. Col-
lectively, these metrics provide a robust evaluation of the 
ANN’s performance in distinguishing between MO and 
HV. In particular, the median accuracy was reported sep-
arately for the training, validation, and test datasets, with 
confusion matrices used to detail performance within 
each subset. Additionally, summary tables of all key met-
rics and the ROC curve illustrated the network’s overall 
performance by evaluating it on the complete dataset 
(i.e., the combined training, validation, and test set input 
into the trained neural network). This comprehensive 
approach provides insights into the model’s effectiveness 
across the entire dataset as well as the subsets, offering 
a thorough assessment of classification accuracy and 
reliability.

All data analyses in this study, including PCA, FFS, 
and ANNs development and evaluation, were conducted 
using MATLAB (MathWorks Inc., 2024) as a selected 
environment for code implementation. It was chosen for 

its extensive suite of toolboxes tailored for data analysis 
and neural network training.

Results
LF-SSEP and HFOs
This study included 177 participants, including 91 MO 
and 86 HV. Table  1 provides the demographic, clinical, 
and electrophysiological characteristics of the partici-
pants. The two groups did not differ significantly in terms 
of age (MO = 32.94 ± 10.80; HV = 31.65 ± 10.89; p = 0.185) 
and motor threshold of the stimulation (HV = 8.96 ± 3.17; 
MO = 8.50 ± 2.59; p = 0.414). However, the MO group had 
a higher proportion of female participants than the HV 
(MO = 73% female vs. HV = 51% female, p-value = 0.003). 
In comparison with HV, individuals with MO showed 
increased peak-to-peak amplitude for grand average P25-
N33 (U = 3195.5, p = 0.035), while reduced amplitude for 
the first block of N20-P25 averaged responses (1st block: 
U = 2995.00, p = 0.007). In contrast to HV, subjects with 
MO exhibited a progressive increase in the amplitude 
slope between blocks 1–2 (Slope 1–2: MO = 0.26 ± 0.66; 
HV= -0.27 ± 0.63; U = 1989.00; p = < 0.001) and blocks 
1–3 (Slope 1–3: MO = 0.10 ± 0.29; HV= -0.11 ± 0.36; 
U = 2573.00; p = < 0.001), indicating deficient habituation. 
While no differences emerged between the latency of 
both pre-and post-HFO and the amplitude of post-HFO, 
individuals with MO exhibited a lower value of the peak-
to-peak amplitude of pre-HFO (pre-HFO amplitude: 
MO = 0.05 ± 0.03; HV = 0.06 ± 0.03; U = 3123.50, p = 0.021). 
No other significant differences emerged between the 
two groups for the remaining neurophysiological vari-
ables (Table 1).

Performance of the model trained with PCA results
Figure 2a illustrates the variance explained by each prin-
cipal component, showing that the first four components 
were required to capture the 95% of the total variance. 
Additionally, as depicted in Fig.  2b, these four compo-
nents represented the lowest number needed to achieve 
the highest accuracy. This was also confirmed by the 
evidence that the inclusion of additional components 
beyond the fourth introduced a minimal modification of 
the accuracy (Fig. 2b). The result of Fig. 2b applies spe-
cifically to the test dataset, ensuring that the evaluation 
reflects the model’s performance on data that was never 
seen during training. The resulting median accuracy 
across the one hundred ANNs runs was approximately 
65%, with a relatively narrow uncertainty interval. This 
indicates that, despite the variability across different 
neural network training runs, the model consistently 
achieved a moderate level of accuracy when evaluated on 
unseen data, reflecting the stability and robustness of the 
selected principal components for classification.

Table 1 Demographics, clinical and electrophysiological 
features of MO and HV (mean ± standard deviation)

MO HV p-value Effect size
Participants (n) 91 86
Female (n) 66 (73%) 44 (51%) 0.003χ²

Age 32.94 ± 10.80 31.65 ± 10.89 0.185U 0.12
MHD 3.74 ± 2.99
SSEP MT (mA) 8.50 ± 2.59 8.96 ± 3.17 0.414t 0.16
N20-P25 (µV) 2.00 ± 1.13 1.93 ± 0.84 0.786U 0.02
P25-N33 (µV) 1.19 ± 0.68 1.00 ± 0.62 0.035U 0.18
1st block (µV) 1.92 ± 1.10 2.27 ± 1.00 0.007U 0.23
2nd block (µV) 2.19 ± 1.12 2.00 ± 0.85 0.506U 0.06
3rd block (µV) 2.13 ± 1.17 2.06 ± 0.82 0.759U 0.03
Slope 1–2 (µV) 0.26 ± 0.66 -0.27 ± 0.63 < 0.001U 0.49
Slope 1–3 (µV) 0.10 ± 0.29 -0.11 ± 0.36 < 0.001U 0.34
Pre-HFO lat (ms) 16.26 ± 1.26 16.50 ± 1.84 0.893U 0.01
Post-HFO lat (ms) 23.28 ± 2.72 23.49 ± 2.64 0.827U 0.02
Pre-HFO amp (µV) 0.05 ± 0.03 0.06 ± 0.03 0.021U 0.20
Post-HFO amp (µV) 0.05 ± 0.04 0.05 ± 0.03 0.966U 0.00
HV = healthy volunteers; mA = milliampere; MHD = monthly headache 
days; MO = episodic migraine; ms = millisecond; MT = motor threshold; 
n = number, SD = standard deviation; SSEP = somatosensory evoked potentials; 
t = independent sample t-test; U = Mann-Whitney U-test; µV = microvolt, χ²= 
Chi-square test
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Figure 3 presents the confusion matrices for the results 
obtained by the ANN configured using only the first four 
principal components. The matrices provide a compre-
hensive assessment of the model’s classification ability, 
showing the distribution of correct and incorrect clas-
sifications within each dataset (training, validation, and 
test). Moreover, we analyzed the ROC curve to evaluate 
the overall performance (complete dataset) of the ANN 
classifier and obtained a final AUC value of 0.75 in identi-
fying individuals with MO (Fig. 3).

Finally, Table 2 summarizes the key performance met-
rics for the ANN trained with the four features derived 
from the PCA, specifically referring to the overall per-
formance evaluated on the complete dataset. The classi-
fication model based on PCA-selected features achieved 
an overall sensitivity of 71.5% and a specificity of 68% in 
identifying subjects with MO, with an F1 score of 69.7%. 
The median sensitivity in identifying HV was 68%, indi-
cating that the model performs similarly in identifying 
HV and MO, with a slight advantage for MO. The stan-
dard deviation of the sensitivity was relatively low (9.2% 
for HV and 7% for MO), which indicates a consistent 
recall across different runs. The model demonstrated 
reasonably good performance, achieving a median over-
all accuracy of 68.9% in distinguishing MO from HV. The 
low variance of the accuracy (5.1%) indicates stable per-
formance across different runs.

Performance of the model trained with FFS results
Figure  4 presents a bar plot illustrating how often each 
feature was selected by the FFS in the “best dataset”—the 
dataset that yielded the highest accuracy for each trained 
ANN. Given the inherent randomness of the training 
process, the features included in the optimal configura-
tion identified by FFS can vary. This analysis provides 
insights into the most consistently selected features, 
highlighting their relevance in achieving high model 
performance.

Three parameters (Slope 1–2, P25-N33, and pre-HFO 
amp) showed a 50% or greater frequency to be included 
in the “best dataset” and were selected as input for 
training the ANN classification model (Fig.  4). Then, 
after defining these inputs, we trained and evaluated 
an additional one hundred neural networks, similar to 
the approach with PCA, to assess the robustness of the 
ANN’s generalization capabilities. Figure  5 shows the 
confusion matrices detailing the classifier’s accuracy 
across training, validation, and test datasets by illustrat-
ing correct and incorrect classifications. Furthermore, in 
Fig. 5, the ROC curve is presented with a median AUC 
value of 0.79 for the class “MO”.

The overall key metrics of the classification model 
based on FFS-selected features are reported in Table  3. 
The overall sensitivity was 71.5%, with a specificity of 
73.8% in identifying subjects with MO and an F1 score 
of 72.7%. The median sensitivity in identifying HV was 
73.8%, indicating that the model performs similarly in 
identifying HV and MO, with a slight advantage for HV. 

Fig. 2 a) Explained variance (%) by each component. The sum of the variance of the first four components accounts for almost 95% of the total variance. 
b) Number of principal components vs. accuracy. The value of the accuracy is based on the test dataset in order to evaluate the network’s robustness in 
terms of generalization capability
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The standard deviation of the sensitivity was relatively 
low (8.7% for HV and 5.2% for MO), which indicates a 
consistent recall across different runs. The model showed 
a median accuracy of almost 73%, with a low variance 
of 3.5%, which reveals stable performance across differ-
ent runs. Notably, the FFS results showed slightly higher 
percentages than the model trained with PCA, indicat-
ing that FFS overperformed the PCA method in correctly 
identifying HV individuals and MO patients.

Discussion
Over the past decade, ML algorithms have experienced 
rapid growth, primarily driven by significant comput-
ing power and technology advancements. This progress 
has enabled the creation of more sophisticated and com-
plex models, leading to breakthroughs in various fields, 
including healthcare. As a result, ML has transitioned 
from theoretical research to practical applications, sig-
nificantly impacting how we solve complex problems 
and analyze vast amounts of data [21]. In the headache 
field, particularly migraine, ML techniques have been 
used to improve the diagnostic accuracy of the non-
specialist [22], identify imaging biomarkers [23], detect 
neurophysiological changes before the attacks [24], clas-
sify migraine subtypes [8, 9, 10, 13, 25, 26], and predict 
treatment response [27, 28]. One area of interest has 
been using neurophysiological data to classify migraine 
patients. Hsiao et al. showed the utility of sensory-evoked 
oscillations from electroencephalogram activity in distin-
guishing between chronic migraine patients and healthy 
controls. Although the small sample size and the absence 

Table 2 Overall performance of the ANN trained with the 
transformed features from principal component analysis (PCA) 
in terms of the median and standard deviation (SD) metrics 
obtained by running 100 neural networks, using the first four 
principal components as input and dividing the dataset into 
training (65%), validation (20%) and test (15%) sets

MO HV
Median Accuracy ± SD 0.689 ± 0.05
Median Sensitivity (Recall) ± SD 0.715 ± 0.070 0.680 ± 0.092
Median Specificity ± SD 0.680 ± 0.092 0.715 ± 0.070
Median F1 Score ± SD 0.697 ± 0.052 0.682 ± 0.061

Fig. 3 a) Confusion matrices for a detailed summary of the ANN’s performance trained with the transformed features from Principal Component Analysis 
(PCA). The matrix is structured such that the rows represent the true classes (HV or MO), and the columns represent the predicted classes. The diagonal 
elements (in green) reflect the number of correctly classified cases (true negatives and true positives: TN - TP), while the off-diagonal elements (in red) 
capture the number of misclassifications (false negatives and false positives: FN - FP). A row summary displays the percentages of correctly and incor-
rectly classified observations for each true class. For example, considering the training dataset, in the row corresponding to the “HV” class, the percentage 
of HV correctly classified is shown along with the percentage of HV misclassified as having MO (TN = 68%; FP = 32%). Similarly, for the “MO” class, the row 
summary indicates the percentage of individuals correctly identified as having MO (TP = 71%) and those misclassified as HV (FN = 29%). b) Area under 
the curve (AUC) for the overall performance of the ANN trained with the transformed features from PCA. The ROC curve is a graphical representation that 
illustrates the performance of a binary classifier across different threshold settings. The ROC curve plots the True Positive Rate (TPR) on the y-axis against 
the False Positive Rate (FPR) on the x-axis for all possible threshold values. As the threshold varies, the trade-off between correctly classifying positive cases 
and misclassifying negative cases as positive is visualized. An ideal classifier would achieve a point near the top-left corner of the ROC plot, where the TPR 
is high, and the FPR is low. Furthermore, the AUC provides a single metric that summarizes the classifier’s overall performance. An AUC of 1 represents 
perfect classification, where the classifier achieves a high TPR with a low FPR across all thresholds. An AUC of 0.5, however, indicates performance no 
better than random chance
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of episodic migraine patients, they achieved an accu-
racy of 87.5% with an AUC of 0.84 with the best model 
[9]. Recently, the same group developed a classification 
model based on data obtained on the combination of 
somatosensory evoked responses and scores of psycho-
metric assessments. This classification model performed 
well in differentiating chronic migraine patients (accu-
racy = 81.8%, AUC = 0.86) and episodic migraine patients 
from healthy controls (accuracy = 77.5%, AUC = 0.84). 
However, it is important to note that when the model 
used only the features of SSEP responses and connec-
tivity, its performance dropped, reaching an accuracy of 
72.3% with an AUC of 0.742 in distinguishing episodic 
migraine patients from healthy controls [13].

Zhu and colleagues used data from SSEP recordings, 
such as latency, amplitude, and spectral power features, 
to develop a model to distinguish healthy controls from 
migraine patients during the interictal and ictal phases. 
Their model achieved over 88% accuracy in classifying 
migraine ictal or interictal versus healthy volunteers, 
with 73.3% accuracy for healthy volunteers-ictal-inter-
ictal classification tasks [8]. Similar to our study, they 
employed SSEP recordings and similar machine learning 
techniques, including PCA and FFS for feature selection. 
However, it is important to note that they used a differ-
ent data collection and extraction method to augment 
the number of data and compensate for the low sample 
size. Indeed, they recorded SSEP by collecting 425 to 
2000 independent trials for each subject, averaged every 

Fig. 4 Feature selection frequency of the 11 considered variables obtained by training 100 neural networks. The green columns indicate the selected 
features for training the ANN
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40 consecutive sweeps, and labeled the resulting wave-
form as a healthy volunteer, ictal, or interictal, depending 
on the subject under study. This resulted in a total of 325 
ictal, 534 interictal, and 323 HV samples from a baseline 
sample of 42 migraine patients, 29 interictal and 13 ictal 
patients, and 15 healthy volunteers [8]. This could be the 
reason why we obtained lower values in the performance 
metrics and different selected features. However, we 
believe a single-subject analysis is preferred when design-
ing a clinical migraine classification system.

In this study, we aimed to evaluate the potential of 
ANNs in distinguishing migraine patients from healthy 
individuals using neurophysiological features derived 
from SSEP recordings. We found that the ANN model 

trained with the FFS results outperformed the model 
trained with PCA results. Indeed, the model trained with 
PCA results showed a median accuracy of 68.9% with 
an AUC of 0.75. In contrast, the model trained with FFS 
results achieved a median accuracy of almost 73% with 
an AUC of 0.79. These different performances could be 
due to the fact that unless these techniques are both 
used for handling high-dimensional data, their objec-
tives and methodologies differ significantly. PCA aims to 
reduce dimensionality by transforming the original cor-
related features into a smaller set of uncorrelated prin-
cipal components, capturing the maximum variance in 
the data. This transformation enhances interpretability 
and computational efficiency by focusing on the direc-
tions of greatest variance [18]. In contrast, FFS focuses 
on improving model performance by iteratively selecting 
the most relevant subset of original features based on a 
predefined performance metric, such as accuracy [19]. 
One could hypothesize that the PCA’s reliance on linear 
combinations of original features might have limited the 
ANN’s ability to capture more complex, non-linear pat-
terns specific to migraine pathophysiology, which the 
FFS could capture [29]. Indeed, the FFS directly identi-
fied three parameters (Slope 1–2, P25-N33, and pre-
HFO amp) that were selected with a frequency of 50% 
or greater and were used as input for training the ANN 

Table 3 Overall performance of the ANN trained with the 
selected features from forward feature selection (FFS) in terms 
of the median and standard deviation (SD) metrics obtained by 
running 100 neural networks, using the three selected features 
as input and dividing the dataset into training (65%), validation 
(20%) and test (15%) sets

MO HV
Median Accuracy ± SD 0.728 ± 0.035
Median Sensitivity (Recall) ± SD 0.715 ± 0.052 0.738 ± 0.087
Median Specificity ± SD 0.738 ± 0.087 0.715 ± 0.052
Median F1 Score ± SD 0.727 ± 0.036 0.725 ± 0.056

Fig. 5 a) Confusion matrices for a detailed summary of the ANN’s performance trained with the Forward Feature Selection (FFS). The matrix is structured 
such that the rows represent the true classes (HV or MO), and the columns represent the predicted classes. The diagonal elements (in green) reflect the 
number of correctly classified cases (true negatives and true positives: TN and TP), while the off-diagonal elements (in red) capture the number of mis-
classifications false negatives and false positives: FN - FP). A row summary displays the percentages of correctly and incorrectly classified observations 
for each true class. For instance, considering the training dataset, in the “HV” class row, the percentage of correctly classified HV is displayed alongside 
the percentage misclassified as having MO (TN = 75%; FP = 25%). Similarly, for the “MO” class, the row summary reflects the percentage of individuals cor-
rectly identified as having MO (TP = 72%), and those misclassified as HV (FN = 28%). b) Area under the curve (AUC) for the overall performance of the ANN 
trained with the features selected with the FFS
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classification model. The slope between blocks 1–2 (i.e., 
habituation) and the amplitude of the pre-HFO represent 
some of the well-established neurophysiological altera-
tions of sensory response characteristics of migraine 
patients [6, 30, 31], and our results support that this pat-
tern of responses could also help distinguish MO from 
HV.

In particular, Slope 1–2 (the linear regression between 
the N20-P25 amplitude of the first and second blocks, i.e., 
habituation) was selected as a feature with a frequency 
of 100% in the best configuration. In contrast, even if 
statistically significant, the slope between the first and 
third blocks (Slope 1–3) was not selected as a relevant 
feature, with a percentage of being selected under 40% 
(Fig. 4). It is not yet clear whether the best methodology 
for calculating the slope is considering the linear regres-
sion between the first and second blocks or between the 
first and third blocks. Ozkul and al. Uckardes observed a 
clear-cut lack of habituation as early as the 2nd block of 
100 averaged responses, which continued in the 3rd and 
4th blocks [32]. Our present results could add an impor-
tant point in favor of Slope 1–2 being more representa-
tive of migraine pathophysiology than Slope 1–3.

Several electrophysiological studies have shown that 
episodic migraine patients interictally are characterized 
by deficient habituation to repetitive stimulations, with 
almost all the non-painful evoked potentials [6], suggest-
ing an altered processing of sensory information. This 
was further supported by the evidence that the magni-
tude of the habituation deficit directly correlated with 
the worsening of the disease [33]. Different hypotheses 
were proposed to explain the habituation deficit, includ-
ing lower cortical activation levels due to abnormal 
thalamic control [31]. In particular, the study of HFOs 
has shown that thalamo-cortical activity is reduced in 
migraine patients between attacks while normalized dur-
ing attacks [30]. This was further supported by the evi-
dence of dynamic microstructural changes in bilateral 
thalami during the interictal period, which normalized 
during attacks [34]. Additionally, functional MRI stud-
ies revealed alteration in thalamocortical networks with 
abnormal connections of the posterior thalamus with 
the visual cortex and the precuneus [35] and reduced 
functional connectivity between the default mode net-
work and the visuospatial system [36]. Then, anatomic 
or functional disconnection of the thalamus from its 
regulatory structures (monoaminergic brainstem nuclei) 
can cause “thalamo-cortical dysrhythmia”, causing these 
cortical oscillatory dysfunctions [37]. In accordance with 
this hypothesis, we found a reduced amplitude for the 
first block of N20-P25 averaged responses and a reduced 
amplitude of pre-HFO, suggesting a decreased level of 
thalamocortical activation along with reduced pre-acti-
vation of the somatosensory cortex. However, only the 

pre-HFO amplitude was selected as a relevant feature 
approximately half of the time, while the amplitude of 
the first block was not selected as a relevant feature for 
improving the model. This suggests that, while both are 
valuable for understanding the migraine pathophysiology 
with a significant difference from a group level, only the 
amplitude of the pre-HFO could have a clinical value in 
distinguishing MO from HV.

Interestingly, we found that MO had an increased 
amplitude of P25-N33 compared to HV, which was 
selected by the FSS as a relevant feature for the classifica-
tion model. We hypothesize that this result could be due 
to an inhibition deficit. In support of this interpretation, 
Valeriani et al. found a disinhibited recovery of the P24 
and N30 SSEP components after paired-pulse stimula-
tion in children with migraine [38]. The origin of the 
P25-N33 complex has long been debated. It was hypoth-
esized that both the somatosensory and rostral-region of 
the supplementary motor area play a part in developing 
this potential [39, 40, 41]. The role of the somatosensory 
cortex in migraine pathophysiology is well-known. Pre-
vious studies showed interictal structural changes in the 
somatosensory cortex of migraine patients [42] along 
with alterations in the regional cerebral blood flow [43], 
while the supplementary motor area seems to contribute 
to stress-related migraine pain perception [44]. Addi-
tionally, face pain, such as that experienced in trigeminal 
neuralgia, is associated with increased P27-N30 parieto-
frontal amplitudes [45]. We argue that the recurrence of 
migraine pain may elicit neuroplastic alterations in the 
sensorimotor cortex.

In conclusion, we showed that the ANN trained with 
SSEP-derived variables holds promise as a noninvasive 
tool for migraine classification, offering potential for 
clinical application and deeper insights into migraine 
diagnostics.

We acknowledge that our study has some limitations. 
First, while the sample size was adequate for this analysis, 
increasing it could significantly enhance the network’s 
generalization and improve the model’s performance. 
This was demonstrated in our study by incorporating 
the dataset initially used as the test set into the training 
and validation sets, resulting in a four-percentage point 
improvement in overall accuracy. Secondly, the homoge-
neity of the migraine group (i.e., only episodic migraine 
without aura) may limit the applicability of the results to 
other migraine subtypes. Then, testing the model in clas-
sifying episodic migraine regarding the different phases 
of the migraine cycle or recognizing chronic migraine 
patients or patients with other forms of primary head-
aches would be crucial in improving the model’s general-
izability and validating its applicability in clinical settings.

Furthermore, the sex distribution was not balanced 
between the two groups (MO group with a higher 
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proportion of female participants compared to the HV 
group). While this imbalance may theoretically influ-
ence the results, several factors mitigate its potential 
impact. First, the dataset used for the ANN develop-
ment was randomly split into training, validation and 
test sets. Moreover, this process was carried out one 
hundred times (the results are presented as the average 
of 100 ANNs), ensuring that the sex-related bias was 
diluted across all these procedures. It is also important 
to note that all the neural networks were trained without 
any information about the sex of the subjects. Then, it 
seems implausible that this imbalance has influenced the 
training of the ANNs. However, to further support the 
robustness of our findings and to scientifically address 
the concern that the sex imbalance could have biased our 
findings, we tested the performance of the ANN in dis-
tinguishing MO and HV depending on the sex (a detailed 
description of this analysis is provided in the Supplemen-
tary Materials). We found that the ANN correctly identi-
fied migraine patients with almost the same percentage 
in both sexes (median sensitivity of 0.72 for male MO and 
0.71 for female MO) (Figure S1). This result confirms that 
the network generalizes well regardless of sex, further 
validating its robustness in distinguishing MO from HV 
patients.

Future studies should validate our findings in a differ-
ent context. Additionally, exploring temporal data using 
sophisticated neural networks (e.g., Long-Short Term 
Memory) could provide insights into how neurophysio-
logical markers and ANN performance change over time, 
particularly in response to treatment. Finally, integrating 
other modalities, such as imaging or genetic or biological 
data, could potentially enhance the predictive power of 
ANNs in migraine classification.

Conclusions
In this study, we provided evidence that the ANNs 
model trained with SSEP-derived variables satisfacto-
rily distinguished MO patients from HV, achieving over 
68% in all the performance metrics (accuracy, sensitiv-
ity, specificity, and F1 scores). The balanced sensitivity 
and specificity across classes suggest that the model is 
equally adept at identifying MO and HV. This is crucial 
for the clinical utility of such models, as it reduces the 
likelihood of misclassification, which could lead to inap-
propriate treatment decisions. Then, the ANNs model 
trained with SSEP-derived variables holds promise as a 
noninvasive tool for migraine classification. However, 
the overall accuracy (68.9 or 72.8%) suggests that while 
the model is robust, it still has potential for refinement. 
Future research could explore integrating additional 
neurophysiological techniques or clinical data, more 
advanced feature selection methods, or different neural 
network architectures to enhance model performance. 

Furthermore, extending this approach to a different pri-
mary headache could improve its applicability in the clin-
ical setting.
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