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followed by hypoperfusion (spreading oligemia) lasting 
for approximately 1–2 h [8, 9].

Experimental evidence shows that CSD results in the 
activation of trigeminovascular neurons in a tempo-
ral way that resembles the onset of headache after aura 
in patients [10]. This suggests that activation of the tri-
geminovascular system (TGVS) is crucial for initiating 
migraine attacks [10]. The activation leads to the release 
of neuropeptides, such as calcitonin gene-related peptide 
(CGRP) and pituitary adenylate cyclase-activating poly-
peptide (PACAP). The resultant arteriolar vasodilation, 
neurogenic inflammation, and mast cell degranulation 
may contribute to the activation or sensitization of dural 
nociceptors [11–13]. Evidence of CSD, as the underlying 
mechanism of aura, was shown in humans by functional 
magnetic resonance imaging (fMRI) [14, 15]. However, 
the existence of a relationship between CSD mechanisms 
and the subsequent head pain remains debated [13].

Calcitonin gene-related peptide, discovered in 1982, is 
a 37-amino acid vasodilator peptide that belongs to the 
calcitonin peptide family and is produced in peripheral 
sensory neurons and multiple sites throughout the CNS 
[16], that has been regarded as a target for the develop-
ment of acute and prophylactic treatment for migraine 
[17]. It is the most abundant neuropeptide within the 
TGVS, where it is expressed in 50% of neurons in the 
human trigeminal ganglia [18].

The first evidence supporting the involvement of CGRP 
in the pathogenesis of migraine dates back to 1990, when 
elevated CGRP levels were observed during spontane-
ous migraine attacks in the external jugular blood, into 
which extracerebral tissues drain [19]. In 1993, it was 
discovered that stimulation of the trigeminal ganglion 

Migraine ranks as one of the most debilitating medi-
cal conditions worldwide, characterized by debilitating 
headaches associated with a plethora of accompanying 
symptoms [1, 2]. Approximately one-third of the patients 
with migraine experience aura, a reversible neurologi-
cal phenomenon that manifests with visual, sensory, 
speech, and motor neurologic symptoms, usually lasting 
5–60  min, either preceding or accompanying headache 
pain [3]. Cortical spreading depression (CSD), originally 
described by Leão in 1944 in a rabbit model, is a wave of 
depolarization of neuronal and glial cells spreading across 
the cerebral cortex at a rate of 2–5 mm/min, followed by 
a long period of hyperpolarization, has been proposed as 
the pathophysiological mechanism of migraine aura [4].

The depolarization typical of CSD is associated with 
local ionic shifts and neurotransmitter and metabolite 
release [5]. This includes the massive increases in extra-
cellular potassium, intracellular sodium and calcium, and 
glutamate release [5]. Among the neurotransmitters, glu-
tamate is prominent in initiating and propagating CSD 
by activating N-methyl-D-aspartic acid (NMDA) recep-
tors [6, 7]. Vascular reactivity and blood flow modifica-
tions follow the change in neuronal excitability, with an 
increase in regional cerebral blood flow for 3–5  min, 
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in cats resulted in the release of CGRP [20]. Both human 
and animal studies have shown that CGRP levels were 
significantly reduced by sumatriptan, in parallel with 
the relief of migraine symptoms in humans [20]. Addi-
tional evidence that CGRP has a role in migraine derives 
from clinical studies in which the infusion of exogenous 
CGRP could trigger migraine attacks in patients prone to 
migraine, suggesting a causative role of this peptide [21, 
22].

More recently, several studies have confirmed elevated 
levels of CGRP in plasma, serum, saliva, tear fluid, and 
cerebrospinal fluid (CSF) in ictal and interictal phases in 
migraine patients compared to healthy controls [23, 24].

Lastly, the strongest ex adiuvantibus implication of 
CGRP in migraine comes from the development of treat-
ments targeting the CGRP pathway, including mono-
clonal antibodies against the CGRP receptor or ligand 
(anti-CGRP mAbs) and small molecule antagonists of 
the CGRP receptor (i.e., gepants), that have shown safety 
and effectiveness as prophylactic and acute therapy for of 
migraine [25]. The role of CGRP in CSD mechanisms has 
been a matter of debate.

Relation between CSD and CGRP in animal models
The hypothesis that CGRP is only involved in the pain 
phase of migraine is reductive. There are several preclini-
cal lines of evidence to support the involvement of CGRP 
in CSD processes and migraine aura, as well as the cou-
pling of CSD with the activation of the TGVS in migraine 
pathophysiology with the subsequent release of CGRP 
from peripheral terminals [26, 27]. These hypotheses 
are supported by the loss of CSD-dependent neurogenic 
inflammatory response observed after sensory denerva-
tion of the meninges [28].

CGRP could also be released centrally in the cerebral 
cortex, influencing neural activity and vascular tone 
[29–31]. Tozzi and colleagues demonstrated that, in rat 
brain, endogenous CGRP was released in a calcium-
dependent manner during potassium-induced CSD [6]. 
Three CGRP receptor antagonists (MK-8825, olcegepant, 
and CGRP 8–37) determined a dose-dependent inhibi-
tory effect on CSD in neocortical slices, suggesting a piv-
otal role of CGRP in this event [6]. Interestingly, in this 
study, CSD was also blocked by NMDA but not AMPA 
receptor antagonists. Moreover, this phenomenon was 
also inhibited by topiramate but not carbamazepine [6]. 
Similarly, preliminary evidence showed that the systemic 
administration of olcegepant to mice in vivo inhibited 
repetitive CSD and altered the vascular response to CSD 
[32]. Fremanezumab, given intravenously in anesthetized 
rats, prevented the activation and sensitization of high-
threshold trigeminovascular neurons by CSD [33]. The 
intraperitoneal application of MK-8825 in awake rats 
with intact blood-brain barrier (BBB), instead, failed to 

block CSD waves in the cortex and the CSD-associated 
hemodynamic changes but reversed the CSD-induced 
behaviors associated with pain and blocked the neuronal 
activation in the spinal trigeminal nucleus [34]. Lastly, 
exogenous CGRP in mice brain slices reversed the effects 
of prolonged CSD latency caused by anti-CGRP antibod-
ies [35].

This data supports the hypothesis that CGRP antago-
nists could act directly or indirectly at a central level [6].

CSD also seems to influence CGRP expression and 
synthesis. Repeated experimental-induced CSD events 
increased CGRP mRNA and peptide levels at 24  h 
post-CSD in the rat cortex ipsilaterally [29]. In agree-
ment, induced CSD in rats significantly enhanced CGRP 
expression in both protein and mRNA levels in the tri-
geminal ganglion [36, 37]. In a mouse model of migraine, 
CSD was also able to induce substantial changes in CSF 
composition, with 11% of the CSF proteome being altered 
in concentration, with up-regulation of proteins involved 
in the activation of receptors in the trigeminal ganglion 
[38]. Among these ligands, CGRP doubled in concentra-
tion [38]. The authors proposed that the CSF transport 
of CGRP to the trigeminal ganglion could be directly 
involved in the development of migraine headache [38].

An elevation of CGRP synthesis in association with 
CSD might contribute to an increased susceptibility to 
migraine through a positive feedback, where CSD trig-
gers CGRP release and synthesis, thereby increasing the 
probability of subsequent CSD and migraine events.

CGRP may also mediate the coupling between neu-
ronal activity and cerebral hyperemia observed during 
CSD [30, 31]. In a rabbit and cat model of CSD, the topi-
cal administration of an inhibitor of the CGRP receptor, 
[8–37], reduced CSD-induced pial dilation [30, 31]. In 
accordance with these findings, brain topical application 
of a CGRP receptor antagonist also decreased hyperper-
fusion associated with CSD [39]. These results suggest 
that CGRP may act as a vascular modulator of CSD, and 
the local release of CGRP in the meninges could contrib-
ute to CSD-induced dilation. In this view, there could be 
a bidirectional relationship where modifications in vascu-
lar tone can modulate neuronal activity, namely vascular-
neuro coupling [40].

Human migraine models
Provocation experiments have demonstrated that intra-
venous infusion of CGRP can induce migraine-like 
attacks in patients with migraine, with and without aura 
[41]. Even to a lesser extent, CGRP provocation experi-
ments have also been conducted in patients with aura 
[41]. In patients who experienced only migraine attacks 
with typical aura, CGRP infusion triggered migraine-like 
attacks without aura in 57% of patients, with four (28%) 
reporting typical aura symptoms [42].
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In an open-label, single-arm, non-randomized trial, 
CGRP was administered intravenously to 34 patients with 
migraine with aura. Thirteen (38%) of 34 participants 
developed an attack of migraine with aura after CGRP 
infusion [43]. The authors hypothesized that CGRP acts 
on meningeal arteries, initiating the transmission of noci-
ceptive information that reaches the somatosensory cor-
tex and other cortical/subcortical areas implicated in the 
perception of migraine pain. In susceptible individuals, 
excitatory stimuli reaching regions like the visual cortex 
may reach the threshold for triggering CSD [43].

Altogether, these findings demonstrated that the major-
ity of patients with migraine, with or without aura, devel-
oped delayed migraine-like attacks after the infusion of 
CGRP, including migraine aura episodes, indicative of a 
CGRP-related common cascade originating cephalic pain 
and aura in both phenotypes of patients.

Clinical evidence of the effectiveness of anti-CGRP 
mAbs in migraine aura
An indirect evidence of the role of CGRP in CSD is the 
effect of anti-CGRP mAbs in reducing the frequency and 
intensity of aura episodes. Anti-CGRP drugs show simi-
lar effectiveness in patients both with and without aura 
because they reduce the number of migraine attacks with 
aura in parallel with the reduction of migraine attacks 
without aura in both real-world studies and post-hoc 
analyses of clinical trials [44–48].

In post hoc analyses of clinical trials, the effectiveness 
of galcanezumab, eptinezumab, and erenumab was simi-
lar in patients with and without aura [46–48].

In other real-world prospective and retrospective stud-
ies or case series of patients with a diagnosis of migraine 
with aura treated with anti-CGRP mAbs, a reduced 
incidence, intensity, and duration of aura was observed 
regardless of the anti-CGRP mAb used or the type of 
migraine (episodic or chronic migraine) [44, 49, 50], with 
some studies showing a reduction in the number of auras 
regardless of responder status [51] or the complete disap-
pearance of aura [52, 53].

A recent case series described the effectiveness of 
galcanezumab in patients with sporadic and familial 
hemiplegic migraine, with improvement in weakness 
symptoms in all patients except for two [54]. In line with 
these results, mice expressing a mutation in SCN1A, 
which is associated with familial hemiplegic type three 
in humans, exhibited spontaneous CSDs that propa-
gate from the visual to the motor cortex [55]. CGRP and 
CGRP receptors are located throughout the CNS. Due to 
their dimension and peptidic nature, anti-CGRP mAbs 
and gepants poorly cross the BBB due to their molecular 
size [16, 56]. In rats, 0.1–0.3% of the plasma concentra-
tion of galcanezumab was found in the CNS [57].

Their action is thought to be through a peripheral site 
of action, and whether the action of CGRP blockade in 
migraine is mediated via central or peripheral mecha-
nisms remains unclear [58]. The trigeminal ganglion has 
always been considered to lack BBB; therefore, it was 
thought it could represent the targets of gepants and 
anti-CGRP mAbs [16].

However, a recent paradigm shift study demonstrated 
that CSF carries solutes from the cortex to the trigemi-
nal ganglion, facilitating nonsynaptic communication 
between the CNS and the periphery [38]. Furthermore, 
these observations are still preliminary, and it has not 
been elucidated whether the BBB remains intact during 
the course of spontaneous migraine attacks with aura or 
if it is uniformly tight throughout the brain, as specific 
regions may be less protected by the BBB than others 
[59].

Thus, if aura originates in the cortex, a direct action 
of anti-CGRP mAbs at this level remains to be demon-
strated; alternatively, the inhibition of CGRP or CGRP 
receptor in the periphery could indirectly influence brain 
functioning, including CSD.

Response to Melo-Carrillo A. The Journal of 
Headache and Pain 2025 [60]
We appreciate the author’s impressive and thorough 
review of the literature on this topic and the effort in 
supporting the “cons” hypothesis. We acknowledge the 
limitations in reproducing CSD in animal models that the 
author raised.

However, it remains challenging to dismiss the role of 
CGRP in CSD entirely, as evidence from electrophysi-
ological, in vivo, and in vitro models suggests that CGRP 
may have a dual role, both centrally and peripherally [6]. 
This is further supported by the fact that CGRP antago-
nism may disrupt neurovascular coupling in CSD to the 
degree that it could reduce or even prevent the occur-
rence of neuronal and/or vascular events [30, 31].

In summary, in vitro studies demonstrate that endoge-
nous CGRP was released during potassium-induced CSD 
and CGRP receptor antagonists inhibited CSD initiation 
[6], and in vivo studies revealed that topical administra-
tion of CGRP receptor antagonists reduced CSD-induced 
pial dilation and hyperperfusion associated with CSD 
[30, 31].

CGRP could also have an excitatory effect itself. 
Gimeno-Ferrer and colleagues demonstrated that topi-
cal application of CGRP in rats in vivo triggered epi-
sodes of local ictal discharge activity related to CSD that 
the CGRP receptor antagonist BIBN4096BS prevented. 
Similarly, in vitro recordings from slices of mouse cor-
tex showed that the application of CGRP evoked periods 
of synchronized activity [61]. In the same study, topical 
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application of CGRP to rat cortex induced plasma extrav-
asation [61].

Such excitatory effects of CGRP, producing repetitive 
action potentials, were also observed in other studies. 
Ryu and colleagues, in the immature rat in vitro spinal 
cord slice-dorsal root ganglion preparation, showed that 
application of CGRP produced a slow reversible depolar-
ization in about one-third of the cells. The CGRP-evoked 
depolarization was associated with enhanced excitabil-
ity in most neurons tested [62]. Similarly, in rat brain 
slices, Han and colleagues showed that CGRP increased 
excitatory postsynaptic currents in the amygdala and 
increased neuronal excitability. An NMDA receptor 
antagonist reversed CGRP-induced synaptic facilita-
tion [63]. In vitro and in vivo models of non-migraine 
pain showed that CGRP receptor blockade in the amyg-
dala directly inhibited NMDA-evoked, but not AMPA-
evoked, membrane currents [64].

Altogether, these data suggest an important role of 
CGRP both in the regulation of neuronal excitability, 
possibly favoring CSD, and in the regulation of brain 
blood flow [61].

Furthermore, these findings reinforce the connection 
between central CGRP and the modulation of NMDA 
receptors and glutamate, as also demonstrated by Tozzi 
and colleagues, who showed that NMDA receptor antag-
onism inhibits CSD [6]. These mechanisms collectively 
enhance neural signaling in the cortex and mutually 
potentiate their effects [64]. Notably, glutamate, a key 
excitatory neurotransmitter, plays a fundamental role 
in CSD susceptibility, initiation, and propagation [65]. 
CGRP, functioning among other roles as a glutamatergic 
co-transmitter, contributes to sustaining dysfunctional 
neuronal excitation within the CNS, an event that is likely 
to occur in the brains of individuals with migraine [64].

A second key strength for CGRP implication in 
migraine CSD/aura is still the clinical evidence support-
ing the effectiveness of anti-CGRP mAbs in migraine 
aura. Indeed, anti-CGRP mAbs can be effective in reduc-
ing migraine with aura in parallel with the reduction 
of the number of migraine attacks [44–48]. However, 
increasing evidence reports a reduction in the number of 
auras regardless of the reduction of migraine days [51], or 
the complete disappearance of aura [52, 53], suggesting 
an independent and direct effect on the aura, which may 
not be mediated necessarily by a peripheral action.

Similarly, along with aura, findings on a positive effect 
of anti-CGRP mAbs on prodromal and accompanying 
symptoms have been reported in the literature, along-
side aura frequency reduction [50, 66]. Some accompa-
nying symptoms, such as photophobia or phonophobia, 
seem to be associated with higher levels of CGRP during 
migraine attacks [67].

In addition, intracerebroventricular administration 
of CGRP in transgenic mice (nestin/hRAMP1) caused a 
significant increase in light aversion prevented by CGRP 
receptor antagonist olcegepant [68].

These symptoms clearly originate within central struc-
tures, including the cortex, thalamus, brainstem, and 
hypothalamus [69]. However, as these regions lie beyond 
the BBB, the mechanism by which anti-CGRP mAbs, act-
ing hypothetically at meningeal trigeminal afferents, pre-
vent the development of migraine symptoms arising from 
the CNS, including aura, remains unclear. Furthermore, 
these symptoms frequently precede the activation of 
nociceptive trigeminovascular fibers and the subsequent 
migraine pain phase.

Comparably, other studies have shown neuroimag-
ing and neurophysiological parameters changes with 
anti-CGRP mAbs [70, 71]. For example, Ziegeler and 
colleagues demonstrated through fMRI that erenumab 
led to a decrease in the activation of a specific network 
following trigeminal nociceptive input, including the 
secondary somatosensory cortex, the thalamus, and the 
insular cortex [70]. While a significant reduction of hypo-
thalamic activation was found only in patients respond-
ers to erenumab [70].

These findings further support the notion that anti-
CGRP mAbs mitigate “central symptoms” by inhibiting 
CGRP-mediated neurotransmission either directly or 
indirectly within the brain. Notably, radiolabeled gal-
canezumab has been shown to accumulate in the brain 
parenchyma and CSF of male rats, even if at low concen-
trations [57]. These findings cannot allow us to exclude 
that a small amount of active medication that reaches the 
CNS could be sufficient for a central effect. It is impor-
tant to highlight that only 21  mg of erenumab signifi-
cantly inhibits capsaicin-induced dermal blood flow (a 
model that assesses the target engagement of CGRP 
blocking agents), while the clinically approved dosages 
for migraine prophylaxis are 70 and 140 mg [72].

Furthermore, the status of the BBB during spontaneous 
migraine attacks with aura remains uncertain. Most neu-
roimaging studies have found no evidence of increased 
BBB permeability during aura, whereas animal models of 
CSD suggest a potential BBB alteration induced by CSD 
[73, 74]. However, it is important to highlight that certain 
structures within the circumventricular organs, which 
may lack BBB, such as the area postrema, have been 
shown in rat models to be functionally connected to key 
regions involved in migraine pathophysiology, includ-
ing the hypothalamic nuclei and the spinal trigeminal 
nucleus. These regions may represent potential targets 
for anti-CGRP mAbs [75].

In conclusion, the available clinical and preclinical 
evidence does not allow us to rule out a significant role 
for CGRP in the mechanisms of CSD and its central 
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function. Targeting the CGRP pathway could also impact 
aura, the clinical manifestation of CSD.
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