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Abstract 

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an auto-
somal-dominantly inherited cerebral small-vessel disease (SVD). CADASIL has diverse clinical features such as migraine 
with aura, dementia, and recurrent strokes, and is caused by a pathogenic mutation in the NOTCH3 gene which 
encodes a transmembrane receptor found in smooth muscle cells of small arteries and pericytes of brain capillar-
ies. Pathogenic mutations alter the number of cysteine residues in the extracellular domain of NOTCH3, leading 
to the abnormal accumulation of granular osmiophilic material in the vessels of affected individuals. In addition, 
potential signaling pathways, such as transforming growth factor beta (TGF-β), may be involved in pathogenesis 
of the disease. This review aims to elucidate these mechanisms, particularly NOTCH3, in the context of CADASIL 
pathogenesis, providing insight into the role of NOTCH3 signaling and discussing the significance of these pathways 
for potential future therapeutic interventions in CADASIL patients.

Key points 

• CADASIL is a rare hereditary cerebral small-vessel disease caused by mutations in NOTCH3 and its associated factors.

• Understanding the role of the NOTCH3 signaling pathway may help in understanding that pathomechanisms 
of CADASIL and its manifestations.

• Recognizing the potential involvement of other signaling pathways, including TGF-β, that may contribute 
to the development or progression of CADASIL is important.

• Exploring the roles of these key signaling pathways associated with CADASIL provides a foundation for advancing 
management and treatment strategies.
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Background
Cerebral autosomal dominant arteriopathy with subcortical 
infarcts and leukoencephalopathy (CADASIL) is a heredi-
tary cerebral small-vessel disease, resulting in stroke, pro-
gressive cognitive impairment, migraine with aura  (MA), 
and psychiatric disturbances [16, 18, 122]. Despite its rare 
occurrence in the general population, CADASIL remains 
the most common monogenic small-vessel disease. 
CADASIL is often considered a ‘pure’ model of cerebral 
small-vessel disease (cSVD) and vascular dementia [18, 22, 
66] due to its occurrence without other concomitant age- 
and AD-related pathologies. CADASIL has commonly 
been reported as having prevalence of around 2–5/100 000 
individuals, but recent advances in genetic testing, such as 
large-scale genome-wide association studies  (GWAS) have 
suggested that the prevalence of NOTCH3 mutations may 
be significantly higher than previously indicated due to 
underdiagnosis and underreporting [104, 132, 176], espe-
cially in certain cohorts such as Asian populations.

While CADASIL is primarily caused by a pathogenic 
variant in the NOTCH3 gene, the underlying mecha-
nism causing the disease’s development and progression 
remains unclear [117]. The NOTCH3 variant results in 
protein misfolding, leading to the accumulation of free 
NOTCH3ECD at the plasma membrane of vascular smooth 
muscle cells (VSMCs) and pericytes. A key pathologi-
cal feature of CADASIL is the accumulation of granular 
osmiophilic material (GOM) on or near the degenerating 
vessel wall (Fig.  1) [95, 124]. GOM is comprised of oli-
gomerized NOTCH3ECD and extracellular matrix pro-
teins, in particular tissue inhibitor of metalloproteinase 3 
(TIMP3) and clusterin, but also endostatin, vitronectin, 
serum amyloid P component (SAP), and latent trans-
forming growth factor binding protein 1 (LTBP- 1). 
SAP co-localization with NOTCH3ECD in GOM hints at 
amyloid-like deposition, though its role remains unclear 
[108]. Although GOM has extensively been associated 
with CADASIL pathology, the pathogenic role of GOM 

Fig. 1  Pathogenesis of CADASIL. The initial and progressive loss of anchorage of artery-type smooth-muscle cells (aSMCs) and pericytes 
to adjacent extracellular matrix cells plays a central role in the pathogenesis of CADASIL, leading to an early increase in the sub-endothelial space. 
The evolution of aSMC alterations includes dramatic separation of different wall cells and the presence of granular osmiophilic material (GOM). 
Brain capillary changes involve the detachment and fragmentation of pericytes, which leads to progressive loss of endothelium-pericyte contacts. 
Morphological observations suggest two stages in CADASIL: first, the impairment and loss of contacts between endothelium and pericyte, 
predicting neurovascular and gliovascular dysfunction; second, the degeneration of capillary pericytes impacting on contractile function, resulting 
in apparent blood–brain barrier (BBB) damage and hypo-permeability. These changes in aSMCs and pericytes contribute to vessel-wall alterations, 
decreased vascular compliance, and microbleeds. Dilatation of perivascular spaces is also characteristic, indicating widespread pericyte involvement
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deposits in CADASIL is still being explored. In addition 
to GOM toxicity, there are other proposed mechanisms 
which may be involved in CADASIL [44]. Firstly, abnor-
mal NOTCH3 signaling has been studied in several inves-
tigations [117], but a consistent conclusion has not been 
reached. Changes occur in receptor processing and pres-
entation, ligand binding, and signal transduction [108, 
183]. Secondly, CADASIL may be related to dysregulation 
of the signaling pathway of transforming growth factor-β 
(TGF- β) [72]. Thirdly, although not causative in nature, 
there are environmental factors (e.g., hypertension and 
smoking) which have been suggested to influence the 
CADASIL phenotype [105, 183].

The  current review aims to  explore the understand-
ing of pathophysiological mechanisms in CADASIL, by 
investigating the NOTCH3-related signaling disruption 
and potential involvement of additional pathways.

Whilst CADASIL varies greatly between and within 
patients, the predominant signs and symptoms include 
MA, subcortical ischemic events, psychiatric distur-
bances, and cognitive decline (Fig.  2) [58, 168, 176]. 
When present, MA tends to be the first symptom, with 
an average age at onset of 30 years [16, 88, 93, 157]. 
MA is usually observed with visual or sensory symp-
toms and occurs less than once a month in majority 

of patients [20, 47, 191]. MA, prevalent in 40% of 
CADASIL patients, may stem from NOTCH3-driven 
cortical spreading depression [158]. Interestingly, 
before the age of menopause, MA appears to be a more 
frequent feature of CADASIL in women than men [48]. 
MA is a risk factor for ischemic stroke, possibly due to 
genetic predisposition, hypercoagulability, increased 
platelet aggregability, and hyperviscosity [20, 47, 191]. 
Ischemic stroke-induced motor dysfunction, apathy, 
and cognitive decline often arise between 40 and 70 
years [29, 132, 169]. Up to 70% of biopsy-confirmed 
patients experience recurring ischemic events, pre-
senting in diverse forms [33, 97, 122].

MRI scans of CADASIL patients typically show small 
lacunar infarcts and severe white matter hyperintensities 
(WMHs), the latter mostly in periventricular white mat-
ter, with involvement of the anterior temporal pole and 
external capsule [76]. Individuals with CADASIL also 
present with cerebral microbleeds (CMB) and enlarged 
perivascular spaces (EPS) [19], as well as global and corti-
cal atrophy [17]. Cognitive deficits in executive function 
and processing speed are a central symptom of the dis-
ease which eventually progress into vascular dementia 
(VaD) [17, 140, 150, 151].

Fig. 2  Clinical presentations of CADASIL. White matter hyperintensity (WMH), lacunes, cerebral microbleeds (CMB), and enlarged perivascular 
spaces (EPS) are hallmark features in CADASIL. WMHs are frequently seen in the anterior temporal lobes, external capsules, and superior frontal 
gyrus. Moreover, lacunes are visible in the anterior temporal lobes, brainstem, lentiform nucleus, and thalamus. Microbleeds are also located 
in the brainstem, thalamus, and external capsules
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The clinical presentation of CADASIL exhibits high 
variability in terms of severity, the predominance of types 
of features, and progression [114, 183]. The evidence 
suggests that late-onset CADASIL with a mild pheno-
type is not uncommon [183]. The phenotypic spectrum 
of NOTCH3 mutations has expanded to include mild 
cerebral small-vessel disease (SVD), an attenuated and 
delayed-onset CADASIL phenotype, as well as the classi-
cal CADASIL with middle-age-onset stroke and demen-
tia [114, 142, 143].

While the position of NOTCH3 mutations plays a sub-
stantial role in CADASIL severity, there remains evident 
phenotypic variation among patients carrying the same 
NOTCH3 mutation, even within the same ethnic group 
[16, 183]. Pescini et al. reported a CADASIL patient with 
the p.Cys1131 Trp mutation who had their first minor 
stroke at 79 [126], while Lee et al. described a male with 
the p.Arg544 Cys mutation experiencing his first lacunar 
stroke at 86 and three asymptomatic carriers with sub-
clinical leukoencephalopathy between 59–67 [84]. These 
studies indicate that late-onset CADASIL with a mild 
phenotype is increasingly recognized. The phenotypic 
spectrum now includes mild cerebral small-vessel dis-
ease, delayed-onset CADASIL, and classical CADASIL 
with middle-age onset stroke and dementia. Genotype–
phenotype correlations show that p.Arg544 Cys mutation 
is associated with milder disease severity and later onset 
compared to other NOTCH3 mutations. For instance, 
Taiwanese p.Arg544 Cys carriers had a 9.1-year delay to 
first symptom onset and fewer white-matter hyperinten-
sities. Similarly, Japanese patients with the p.Arg75Pro 
mutation had a higher age at symptom onset and fewer 
anterior temporal pole involvements [87, 167].

Mutations in the exons 2–24 of NOTCH3 with notable 
mutation hotspots in exons 2–6. In France, the UK, and 
Germany, 55%–72.9% of mutations are in exon 4 [121]. 
Dutch families also show half of the mutations in exon 4 
and 15% in exon 11. In Japan, p.Arg133 Cys and p.Arg182 
Cys in exon 4, and p.Arg75Pro in exon 3, are common, 
while Eastern China frequently sees the p.Arg607 Cys 
mutation in exon 11. Central Italy has a higher preva-
lence of p.Arg1006 Cys in exon 19. The p.Arg544 Cys 
mutation in exon 11 accounts for significant proportions 
of CADASIL cases in Jeju Island (90.3%), Taiwan (70.5%), 
and Southeastern China (15.5%), indicating a founder 
effect, where a single mutation in a common ancestor is 
prevalent in descendants [167]. This effect is also seen 
with the p.Arg133 Cys mutation in Finland and Kyushu, 
Japan. The p.Arg75Pro mutation appears unique to East 
Asia, suggesting regional founder effects [148]. These 
findings highlight the importance of population-specific 
genetic analysis for CADASIL [183].

Phenotypic variability in CADASIL arises from both 
genetic and environmental interplay. Mutations in epi-
dermal growth factor-like repeats (EGFr) 1–6 correlate 
with earlier, severe phenotypes like stroke, while EGFr 
7–34 variants often present milder, delayed-onset dis-
ease [183]. Environmental factors, such as hypertension, 
exacerbate vascular stiffness, accelerating GOM deposi-
tion and WMH burden, particularly in genetically pre-
disposed individuals, while smoking amplifies oxidative 
stress, synergizing with NOTCH3 mutations to worsen 
cognitive decline [154].

The role of NOTCH3 in CADASIL
Each EGFr subunit of the NOTCH3ECD contains six 
cysteine residues which partner to form disulfide bridges. 
When there is an uneven number of cysteines, as is com-
mon in CADASIL-causing NOTCH3 mutations, the 
unpaired cysteine disrupts normal EGFr function and 
causes protein misfolding [67, 70]. It is thought that 98% 
of mutations in CADASIL are missense mutations lead-
ing to the gain or loss of a cysteine residue [144], though 
there are some reports of splice site mutations and small 
inframe deletions [23, 24, 37, 87]. The pathogenicity of 
non-cysteine altering mutations is as yet unknown. In 
CADASIL, the free NOTCH3ECD accumulates at the 
plasma membrane of VSMCs and pericytes within or 
near GOM [65, 117, 182]. The aggregation of GOM is a 
key contributor to CADASIL pathology [62]. Over 300 
pathogenic variants have been identified in patients with 
CADASIL, reported across the 34 EGFr domains. The 
strongest known modifying factor in disease presentation 
is position of the NOTCH3 pathogenic variant [145]. The 
most severe CADASIL phenotypic presentation has been 
associated with variants in the first six EGFr domains, as 
compared to variants domains 7–34 [20, 142, 147]. How-
ever, CADASIL development is not limited to pathogenic 
variants in the first 6 EGFr domains, suggesting this can-
not fully explain the disease-causing mechanism [49].

A study on neuroimaging and clinical features in indi-
viduals with cysteine-altering NOTCH3 variants from 
the UK Biobank [145] showed that CADASIL repre-
sents the severe and rare end of the NOTCH3-associated 
disease spectrum. UK Biobank data from over 200 000 
individuals revealed a higher-than-expected prevalence 
of NOTCH3 variants (1 in 450 individuals) in the gen-
eral population [21]. NOTCH3 variants are frequently 
present in the general population, but individuals often 
exhibit a milder SVD phenotype or no indication of 
white matter disease [5, 21]. These large population-
based studies suggest a broad spectrum of SVD sever-
ity influenced by position of the variant in the EGFr 
domains. Individuals with EGFr 7 to 34 variants still face 
an increased risk of cognitive deficits, possibly linked to 
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the burden of WMH [145]. While CADASIL variants 
affect the NOTCH3ECD, leading to abnormal accumula-
tion, the study acknowledges that variant position alone 
does not fully explain observed heterogeneity. Instead, 
there might be an influence of vascular risk factors 
alongside genetic modifiers [21].

CADASIL can be caused by mutations in the NOTCH3 
gene, located on chromosome 19 [65, 66]. The NOTCH3 
gene is one of four mammalian NOTCH homologs, 
essential for various developmental processes such as 
vasculogenesis, cell proliferation, fate determination, and 
apoptosis, which are  expressed during VSMCs matura-
tion and differentiation [31, 67, 70, 175, 183]. NOTCH3 
contains 33 exons which encode a transmembrane pro-
tein called NOTCH3. The NOTCH3 protein is comprised 
of an ectodomain (NOTCH3ECD) and a C-terminal com-
prised of a transmembrane domain and an intracellular 
domain (NOTCH3ICD) [144]. The NOTCH3ECD contains 
34 EGFrs, the ligand-binding site indicated at EGFr 
10–11 [67, 125]. The most pathogenic mutations occur in 
exons 2–24, and some studies have revealed that muta-
tions outside the EGFr coding region (exons 25–33) may 
also contribute to CADASIL [26, 60]. When the ligand 
binds to NOTCH3ECD, this complex is dissociated into 
the interstitial space between cells. This process exposes 
the C-terminus for cleavage by A disintegrin and met-
alloprotease (ADAM)  10 and ADAM17 enzymes, and 
finally by γ-secretase which frees the NOTCH3ICD from 
the transmembrane domain. The resulting NOTCH3ICD 
enters the nucleus where it regulates gene transcription 
of target genes, assisting in VSMC homeostasis [37, 164].

Moreover, exons 2–6 are regarded as mutation hot-
spots, exhibiting ethnic variations. Among patients 
with CADASIL from France, the UK, and Germany, 
55%–72.9% of the mutations were found in exon 4 of 
NOTCH3, while exons 3, 5, and 6 followed as the next 
most common locations in order [63, 175]. Studies 
mention that mutations that impact the ligand-binding 
domain of NOTCH3 can lead to hypoactive and hyperac-
tive NOTCH3 signaling, which can contribute to the dis-
ruption of vascular integrity and function [12, 25]. This 
disrupted signaling pathway may result in the degenera-
tion of VSMCs, defects of arterial structures, BBB leak-
age, and increased susceptibility to ischemic strokes 
[124, 150]. Reports of patients with NOTCH3 mutations 
leading to NOTCH3 loss of function demonstrate the 
role of this signaling pathway in cSVD, presenting symp-
toms such as leukoencephalopathy, stroke, and cognitive 
impairment [3, 38, 56, 122].

Immunohistological analyses of post-mortem brain 
samples from patients with CADASIL revealed signifi-
cant differences in protein levels, particularly in ECM 
constituents, cytoskeleton, protein processing, vesicular 

traffic, and cell adhesion [183]. Proteomic analysis of 
human brain arteries in CADASIL patients with the 
p.Arg1031 Cys NOTCH3 mutation identified 19 proteins 
with considerable level variations [108, 110]. ECM pro-
teins such as collagen 1α2, collagen12α1, collagen14α1, 
collagen18α1, laminin α5, laminin γ1, lactadherin, clus-
terin, vinculin, leucine-rich repeat proteoglycan, and per-
lecan were increased, while neurofilament, neurofascin, 
internexin α, and solute carrier family 4 were decreased 
[5]. These proteins have been identified as GOM deposit 
components in postmortem brain vessels from French 
CADASIL patients. Proteomic analysis of brain arter-
ies in transgenic mice and human samples enriched 
with NOTCHECD revealed the presence of TIMP3 and 
vitronectin in CADASIL and their absence in controls. 
TIMP3 activity significantly increased in postmortem 
CADASIL patients. Serum TIMP3 and related matrix 
metalloproteinase  (MMP) levels in CADASIL patients 
remain unknown. Studies have identified novel or rare de 
novo mutations in the NOTCH3 gene, which may lead to 
CADASIL in individuals without a prior family history. 
These mutations have been particularly noted in Japa-
nese patients, providing further insights into the disease’s 
underlying mechanisms [66, 91].

NOTCH3 mutations that lead to loss of function can 
result in clinical manifestations such as leukoencepha-
lopathy, stroke, and cognitive impairment. These symp-
toms are often linked with specific mutations within the 
ligand-binding domain of NOTCH3, emphasizing the 
importance of this signaling pathway in the context of 
cSVD [5, 91, 108, 183].

Types of NOTCH3 mutations
Typical cysteine‑altering mutations 
The altered bonding pattern within the EGFr, character-
ized by cysteine 1 → 3, 2 → 4, and 5 → 6 connections, 
leads to abnormal structural changes in NOTCH3. Stud-
ies on recombinant NOTCH3 proteins reveal consistent 
differences in mutant proteins, including increased oli-
gomerization and heightened sensitivity to trans-reduc-
tion. These findings suggest a crucial role for cysteine and 
disulfide pairing in initiating structural abnormalities in 
NOTCH3. However, several aspects, such as the impact 
and range of cysteine mutations, the role of amino acid 
replacements, and the influence of unpairing or free 
cysteine, remain unclear [83]. Investigations of NOTCH3 
mutations affecting cysteine residues in the ligand-bind-
ing domain reveal varying clinical severity, with some 
individuals experiencing a milder phenotype, while oth-
ers exhibit earlier onset strokes and widespread MRI 
abnormalities (Fig. 3) [37, 119, 140, 150].

In Caucasian populations, MA is the predominant initial 
symptom of CADASIL, while in Asian cohorts, recurrent 



Page 6 of 26Heidari et al. The Journal of Headache and Pain           (2025) 26:96 

strokes, memory impairment, and cognitive decline 
often with minimal or no evidence of MA, are commonly 
observed. This highlights significant regional variations 
in the presentation of CADASIL, suggesting that genetic, 
environmental, and lifestyle factors may influence the clin-
ical manifestations of the disease [75, 158].

Cysteine‑sparing mutations
Cysteine-sparing mutations in NOTCH3 have also  been 
reported [77, 117]. CADASIL patients with cysteine-
sparing mutations typically exhibit similar phenotypes 
to individuals with cysteine-affecting mutations, with 
reports of later onset and milder symptoms [58, 117]. 
However, a comprehensive understanding of the patho-
logical role of cysteine-sparing mutations in NOTCH3 in 
CADASIL is yet to be elucidated (Fig. 3) [112]. Cysteine-
sparing mutations have mostly been observed in Asian 
cohorts [167, 174, 177], suggesting potential ethnic 

differences in genotype distribution [23, 24, 59, 111]. A 
cysteine-sparing mutation outside EGFr exons was iden-
tified in patient with GOM deposition in SVD [83]. There 
have been case reports of individuals with a clinical phe-
notype consistent with CADASIL, carrying non-cysteine 
mutations in NOTCH3 [177]. While this may suggest a 
non-traditional mutation in CADASIL, it could also rep-
resent a CADASIL-like syndrome or may not be patho-
genic; further investigation is ongoing [67, 70].

Non‑genetic factors involved in CADASIL
Some cohort studies have revealed that within a family 
with the same genetic and mutation  background, dif-
ferent phenotypes can occur, suggesting that CADASIL 
may also  be influenced by non-genetic factors [92]. 
Certain non-genetic factors, such as smoking, sex, and 
arterial hypertension, have been linked to an increased 
risk of stroke and dementia [76, 115]. The role of 

Fig. 3  Schematic view of Cysteine-dependent mutations, being responsible for the onset and progression of CADASIL. Each of the 33 exons 
that make up the NOTCH3 gene encodes a part of a specific domain present in this receptor. Most mutations occur in the EGFr domain, encoded 
by exons 2–24. Cysteine-altering mutations are identified in red, and cysteine-sparing mutations are identified in blue. EGF, epidermal growth factor; 
LNR, LIN- 12/Notch repeats; NRR, negative regulatory region; RAM, RBP-Jkappa-associated molecule domain; PEST, domain rich in Pro, Glu, Ser and Thr
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hypertension and smoking in arterial stiffness, as well as 
impaired vascular reactivity, has been associated with a 
severe phenotype of cognitive symptoms in CADASIL 
[136, 149, 154]. Furthermore, the effects of hypertension 
and smoking on VSMC result in a synthetic-like pheno-
type rather than a contractile one via nicotinic acetyl-
choline receptors and G protein-coupled receptors [79, 
187]. It has been  mentioned by few studies that nico-
tine stimulates the movement of VSMC from the tunica 
media to atheromatous plaques in the vascular intima 
[187]. This change enhances the progression of the dis-
ease [149, 154].

Hypertension and smoking significantly exacer-
bate the progression of CADASIL by increasing vas-
cular stress on already compromised VSMCs due to 
NOTCH3 mutations. Hypertension contributes to 
elevated mechanical strain on arterial walls. This issue 
may accelerate the deposition of GOM within the vas-
cular structure. Concurrently, smoking introduces 
oxidative stress and inflammation, further impairing 
VSMC function and promoting a more synthetic phe-
notype, which is characterized by increased prolifera-
tion and altered extracellular matrix production. These 
environmental factors likely interact with NOTCH3 
mutations by enhancing downstream effects such as 
dysregulation of the RhoA/Rho kinase pathway, ulti-
mately leading to a more severe clinical phenotype in 
CADASIL patients [93].

S1 and S2 cleavage
Signal transduction in NOTCH3 pathway occurs through 
receptor-ligand binding between adjacent cells [183]. 
Ligand binding leads to proteolytic cleavage of the trans-
membrane region, resulting in the production of a tran-
scriptionally active ICD. The cleavage by γ-secretase 
releases NOTCH3ICD, which translocates into the nucleus 
to activate downstream target genes [45, 52]. Several 
studies have shown changes in the S1 cleavage of mutant 
NOTCH3/Notch3 (p.Arg133 Cys, p.Cys183 Arg, and mouse 
p.Arg142 Cys and p.Cys187 Arg) [69]. The decreased level 
of S1-cleaved mutant receptors (p.Arg142 Cys) compared 
to full-length receptors may be due to impaired recep-
tor trafficking. This reduced ratio of S1-cleaved mutant 
receptors leads to intracellular aggregation and decreased 
cell-surface presentation, even though the ligand-induced 
signaling itself remains intact [52, 69, 96, 127].

Homozygotes 
Although CADASIL commonly arises from single muta-
tions in the NOTCH3 gene (heterozygous), but there have 
been a few reported cases which involve homozygous 
mutations [113, 166]. While, in some cases, homozygous 
mutations presented more severe clinical manifestations 

compared to heterozygous mutations, there is not com-
plete agreement on this matter [53, 155]. For example, 
the homozygous NOTCH3 R544 C mutation has been 
reported in a few cases from East Asia, which presented 
with similar clinical phenotypes to the more common 
heterozygous NOTCH3 R544 C [82, 87].

NOTCH3 pathway, as the major signaling 
mechanism involved in CADASIL pathogenesis
Studies have mentioned that CADASIL-associated 
mutations enhance the multimerization of NOTCH3 
contributing to the pathological process (Fig.  4) [25, 
63]. NOTCH3 also interacts with the transcription 
factor RBP-Jk by activating the transcription of target 
genes, a process critical in arterial smooth muscle cells 
[1, 99, 125].

The NOTCH3 signaling pathway is a highly conserved 
mechanism among species [10, 116]. It involves a sophis-
ticated sequence of events, initiated by the interaction 
between NOTCH receptors and the Delta/Serrate/Lag- 2 
(DSL) family of ligands. Receptor-ligand binding induces 
a series of intricate processes leading to transcriptional 
activation [135].

The process begins with triggering DSL ligands bind-
ing to NOTCH receptors ubiquitination and subse-
quent clathrin-mediated endocytosis [86, 172]. The 
activation of NOTCH signaling is a complex process 
with various regulatory steps including ligand-induced 
endocytosis, destabilization of the Negative Regula-
tory Region (NRR), and the interplay between activa-
tion and repression complexes in the nucleus [28, 42]. 
Regulated Intramembrane Proteolysis (RIP) is a criti-
cal step in the activation of NOTCH proteins, due to 
their typical inactivity in the absence of ligands. In 
response to ligand stimulation, RIP enables the release 
of NOTCH3ICD to the nucleus. This process includes 
initial cutting by an ADAM protease in the NRR and 
subsequent cutting by γ-secretase in the intramem-
brane region. The NRR acts as an autoregulatory 
switch that maintains NOTCH quiescence, and its dis-
ruption can lead to autonomous receptor activation 
[184]. The NRR’s combination is stabilized by calcium 
ions, and destabilization of this structure can activate 
Notch independent of ligands. Notch activation by DSL 
ligands is actively regulated within sender cells. MIB1, 
a major E3 ubiquitin ligase in mammals, is involved in 
ligand endocytosis and regulation of ligand activity. 
Ligand ubiquitination recruits the endocytic adapter 
protein Epsin, leading to clathrin-mediated endocyto-
sis [43]. In addition, the NOTCH ligands can diffuse on 
the cell membrane, and impact signaling strength by 
influencing the number of receptor-ligand pairs at the 
cell contact area [57, 150].
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When NOTCH3ICD is released from the cell mem-
brane, it combines with the transcription factor recom-
bination signal binding protein for immunoglobulin 

Kappa J region (RBPJ) and a co-activator to form a 
NOTCH transcriptional complex (NTC). In the absence 
of NOTCH3ICD, RBPJ acts as a transcriptional repressor, 

Fig. 4  A schematic illustration of NOTCH3 signaling pathway involvement in the pathogenesis of CADASIL. NOTCH3 receptor is affected 
by a complex processing, including cleavage and activation steps. In the absence of NOTCH3 mutations, NOTCH3 receptor binds to its ligand. 
Ligand binding results in the engulfment of N3 TMIC through the clathrin-dependent endocytosis. The N3ICD will then be cleaved by γ-secretase 
to be transferred into the nucleus to trigger the subsequent activation of NOTCH3 target genes. In the absence of NOCTH3, RhoA is downregulated, 
leading to the suppression of Rho kinase, which in turn decreases myosin phosphorylation. Contrarily, once the receptor, especially its extracellular 
domain is mutated (p.Cys428Ser and p.Cys455 Arg), the mentioned process is disrupted, affecting the ligand binding, and thus signal transduction 
mechanism. GOM deposition in the basement membrane involves the accumulation of NOTCH3.ECD (N3ECD) multimers. The mutant NOTCH3 
triggers the generation of these multimers, contributing to their intracellular (N3ICD) aggregation. When the removal process of these aggregates 
is impaired, ER stress, cell death, and abnormal vascular smooth muscle cell (VSMC) growth will be developed. GOM may also disrupt VSMC 
function, potentially affecting intramural periarterial drainage and contributing to white-matter degeneration. NOTCH3 signaling interacts 
with TGF-β via LTBP- 1 in GOM and RhoA to regulate vascular tone, driving CADASIL pathology [9, 100]
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forming complexes with co-repressor proteins. NOTCH 
signaling has an intricate interplay to balance activation 
and repression complexes [179, 180]. Studies suggest that 
the presence of NOTCHICD enhances the recruitment of 
both activation and repression complexes to target genes. 
NOTCH activation also involves dimeric NTC complexes 
on sequence-paired sites, which further fine-tune the 
transcriptional response [133, 185, 189, 192].

Studies have identified the regions of responsivities for 
receptor-ligand of NOTCH receptors and ligands result 
in differential activity [11, 106]. Various studies tried to 
quantify interactions with specific ligand-binding regions 
identified within the NOTCH3ECD of NOTCH receptors 
[32, 42]. Structural studies have illustrated the interac-
tions between NOTCH receptors and ligands along with 
focusing on the role of O-linked fucose modifications in 
the receptor-ligand interface [94, 118, 156]. Cis-inhibi-
tion between receptors and ligands has been observed, 
with ligands expressed in the same cells as NOTCH 
receptors which illustrate some inhibitory effects. The 
involvement of fringe proteins in this process further 
diversifies the potential signaling states of cells [188]. 
Ligand Dll3 that exhibit only cis-inhibitory effects and 
others with same function are crucial for proper somi-
togenesis in mice. The structural basis for cis-inhibition 
lies in the binding of receptors and ligands in the same 
anti-parallel direction, preventing the exertion of a pull-
ing force on the receptor by the ligand [64, 118, 125, 164].

Other research has  mentioned that NOTCH3 plays a 
critical role in vascular injury and VSMC survival [12]. 
Comparing wild-type NOTCH3 and NOTCH 3R142 
C revealed that the R142 C mutation led to reduced 
S1 cleavage and diminished cell surface expression of 
the NOTCH3 receptor [71]. Additionally, the muta-
tion enhanced the formation of intracellular aggregates 
resembling aggresomes along with potential disrup-
tions in receptor trafficking through the endoplasmic 
reticulum [9]. Despite these alterations, the study dem-
onstrated that the R142 C mutation does not affect the 
signaling capacity of the NOTCH3 receptor in response 
to ligand induction [64, 71].

In order to investigate the signaling pathways in 
CADASIL, five mutations were examined and it was 
found that some mutations did result in impaired ligand-
induced NOTCH3 activity, mediated by the RBPJ tran-
scription factor [69]. Specifically, C428S exhibited 
impaired ligand-binding ability, while C542Y displayed 
reduced cell surface expression. The results indicate that 
the impaired activity of the mutations arises through dif-
ferent mechanisms. The C428S mutant lost its Jagged1-
binding ability, whereas C542Y retained it but exhibited 
impaired presentation to the cell surface. In contrast, the 

R90 C, C212S, and R1006 C mutants retained the ability 
to bind Jagged1 and were associated with apparently nor-
mal levels of signaling activity [69].

It has been found that the NOTCH3 signaling pathway 
regulates the expression of specific markers (incl. ephrin 
B2 (eph) and eph B4) expressed in both VSMCs and 
endothelial cells [130]. The results demonstrate that the 
genetic disruption of NOTCH3 signaling in VSMCs leads 
to abnormal cerebrovascular development, characterized 
by defective arterial patterning, disrupted anastomoses, 
asymmetry in vessel caliber, and impaired collateral for-
mation in the circle of Willis. Importantly, the reduced 
expression of eph B2 in VSMCs of mutant cerebral arter-
ies highlights the essential role of NOTCH3 signaling in 
guiding proper arterial maturation. These findings under-
score the significance of NOTCH3 signaling in vSMCs for 
the maintenance of normal cerebrovascular architecture 
and, consequently, for responding to ischemic challenges 
and ensuring cerebral perfusion.

The role of NOTCH3 in arterial function was explored 
using a mouse model [9]. The study involved compar-
ing the mechanical properties and vascular reactivity of 
arteries from wild-type and Notch3-null mice. NOTCH3 
deficiency was found to impair the response to pressure 
and flow in specific arteries, indicating its involvement 
in regulating myogenic tone and flow-mediated dilation. 
The absence of NOTCH3 was associated with decreased 
RhoA activity, reduced myosin light chain phosphoryla-
tion, and altered integrin expression levels, emphasiz-
ing its critical role in modulating the RhoA/Rho kinase 
signaling pathway [9]. These insights indicate a potential 
molecular mechanism underlying NOTCH3-mediated 
vascular function.

The translocated NOTCHICD forms  complex with 
the DNA-binding transcription factor CSL inside the 
nucleus to regulate target genes. The multifaceted role 
of CSL (RBPJ in vertebrates) in NOTCH3 signaling is 
context-dependent [179]. The RBPJ/L3MBTL3 interac-
tion, identified through proteomic analyses, is critical 
in this process. L3MBTL3, a member of the MBT fam-
ily, interacts with RBPJ to be  co-localized on chroma-
tin, recruiting the histone demethylase KDM1 A to 
NOTCH target genes for their transcriptional repres-
sion. The RBPJ/L3MBTL3 interaction is mediated by the 
N-terminal end of L3MBTL3, with specific residues in 
the RBPJ b-trefoil domain. The binding affinity between 
RBPJ and L3MBTL3 is moderate, and NOTCHICD has 
a significantly higher affinity, possibly competing with 
L3MBTL3 for RBPJ binding. L3MBTL3 plays a critical 
role in the RBPJ-mediated repression of NOTCH target 
genes, acting via KDM1 A-mediated demethylation of 
H3 K4 me2. In  vivo analyses in Drosophila highlighted 
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the conservation of the functional link between dL(3)mbt 
and NOTCH, validating the evolutionary conservation of 
this molecular mechanism across metazoans [179].

Investigating the role of NOTCH receptors in TLR-
activated macrophages highlighted the differential 
impacts of DLL4 and JAGGED1 on NOTCH signaling, 
with DLL4 enhancing the process and JAGGED1 exhib-
iting inhibitory effects [94]. Additionally, the study 
has emphasized the essential role of ADAM10 in NOTCH 
signaling, especially post TLR activation, although a 
minor contribution of ADAM17 was observed. Notably, 
the research shed light on the distinct contributions of 
NOTCH1, NOTCH2, and NOTCH3 in macrophage acti-
vation, with emphasis on the specific role of NOTCH3 
in modulating NF-κB activation, potentially through p38 
activation. Furthermore, the study pointed to the unique 
properties of NOTCH3, including its rapid activation 
and structural differences compared to NOTCH1 and 
NOTCH2. The results also suggested a dynamic interplay 
between NOTCH1 and NOTCH3 during macrophage 
activation, with NOTCH3 playing a dominant role in the 
early stages and NOTCH1 taking control in later phases. 
Overall, the research contributes to the understanding of 
the complex interplay of NOTCH receptors in regulating 
macrophage activation and their potential implications in 
the context of inflammation [94].

Taken together,  the central role of NOTCH3 in the 
pathogenesis of CADASIL is known as a critical fac-
tor in the development of this disease. Mutations in the 
NOTCH3 gene lead to the accumulation of the NOTCH3 
protein, resulting in the selective degeneration of SMCs 
in blood vessels, which ultimately causes vascular dam-
age and manifests as migraine headaches and early 
strokes [102]. Recent studies have shown that NOTCH3 
mutations can lead to structural changes in the protein 
and disrupt NOTCH3 signalling, directly linking these 
alterations to the pathogenesis of CADASIL [13, 105]. 
Furthermore, new research indicates that unusual muta-
tions in NOTCH3 can result in varying clinical mani-
festations, requires more attention in the diagnosis and 
treatment of this condition [13].

Transforming growth factor‑Β (TGF‑Β) signaling 
pathway may also contribute to CADASIL 
progression
In CADASIL, the TGF-β pathway has been reported to 
be dysregulated, as indicated by the recruitment of latent 
transforming growth factor binding protein (LTBP- 1) 
into NOTCHECD deposits and the increased expression 
of latency associated peptide (LAP) in affected vessels 
(Fig.  5) [72, 153]. This sequestration of LAP shows that 
the TGF-β pathway may be involved in CADASIL patho-
genesis, by altering TGF-β bioavailability. Notably, the 

bioavailability of TGF-β is regulated by various mole-
cules such as fibronectin, fibrillin- 1, and LTBP-1 [16, 67, 
70]. In CADASIL, TGF-β pathway dysregulation affects 
VSMCs and vessel thickening, impaired functional-
ity, and increased fibrotic thickening of vessels. LTBP-1 
sequestration and altered TGF-β bioavailability suggest 
its role in CADASIL pathogenesis [28, 122, 134]. Similar 
dysregulation of the TGF-β pathway has been observed 
in other vascular diseases, such as Marfan syndrome 
and the recessively inherited, CARASIL [72, 164]. Fur-
ther investigations into the TGF-β pathway in CADASIL 
and its potential role in disease pathogenesis are neces-
sary. Insights from molecular evaluations investigating 
the pathology of CADASIL have unveiled several crucial 
mechanisms contributing to the clinical manifestations 
of the disease and its therapeutic implications. The role 
of GOM, NOTCH3 transendocytosis, and downstream 
signaling related to TGF-β have been identified as essen-
tial components for comprehending disease progression 
[72, 104, 156]. Studies suggest that the dysregulation of 
LTBP-1 and other proteins involved in TGF-β biology, 
such as Emilin and Nidogen, may play a role in CADASIL 
development (Fig. 5).

In‑vitro and in‑vivo evaluations
In‑vitro analyses investigating CADASIL‑related signaling 
pathways
Various in-vitro structures have been used for studying 
CADASIL, including VSMCs [51, 165], skin fibroblasts 
[131], myoblasts [2], oligodendrocytes [161], and human 
embryonic kidney (HEK293) cells [31]. Table 1 has sum-
marized key in-vitro studies, as well as in-vivo investiga-
tions, on CADASIL-related signal transduction.

Studies that have used induced pluripotent stem cells 
(iPSCs) derived from CADASIL patients have demon-
strated structural and functional aberrations, including 
dysregulated activation of NOTCH signaling and NF-κB 
pathway, resulting in inflammatory responses and vascu-
lar dysfunction [36, 89, 159]. These studies highlighted 
anomalies in mediators and microfilament structures, 
such as linking to NOTCH3-mediated expression, in 
addition to defects in innate immunity and cellular adhe-
sion assessed in endothelial cells during inflammatory 
conditions [89]. Moreover, iPSC-derived vascular mural 
cells exhibited alterations in platelet-derived growth fac-
tor receptor beta (PDGFRβ) and VEGF levels potentially 
due to NOTCH3-related gain-of-function mechanisms, 
in turn affecting capillary stabilization [138]. In a study 
of CADASIL patient-derived iPSC-derived VSMCs 
(iPSC-MCs), the iPSC-MCs illustrated dysfunction 
compared to those from healthy individuals [73]. Spe-
cifically, CADASIL iPSC-MCs were unable to stabilize 
angiogenic capillary structures and support the survival 
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of iPSC-derived endothelial cells. Further investiga-
tions revealed that CADASIL iPSC-MCs had decreased 
PDGFRβ and reduced secretion of VEGF, both crucial 
for maintaining the stability of the capillary network. To 
rescue these phenotypes, the researchers supplemented 
VEGF and conducted siRNA knockdown of NOTCH3, 
which significantly improved the stability of the capillary 
structures formed by the CADASIL iPSC endothelial cells 
and iPSC-MCs. This suggests that the NOTCH3 muta-
tion plays a role in the observed defects in the CADASIL 

iPSC-MCs, indicating its involvement in the capillary 
network stabilization. An in-vitro study of the role of glu-
cose transporters (GLUTs) in VSMCs in CADASIL was 
also  investigated [123]. Using cerebral VSMCs derived 
from CADASIL patients and control subjects, along with 
post-mortem brain tissues, researchers underscored the 
role of glucose metabolism in CADASIL and its possible 
implications for disease progression. The study examined 
the expression levels of GLUT2 and GLUT4, finding that 
both GLUT2 and GLUT4 expressions were reduced in 

Fig. 5  TGF-β signal transduction, the other signaling mechanism contributed to CADASIL development. TGF-β pathway is reported to be 
dysregulated, as evidenced by the recruitment of latent transforming growth factor binding-protein (LTBP-1) into NOTCH extracellular domain 
(Notch-ECD) deposits and increased expression of latency associated peptide (LAP) in affected vessels. The dysregulation of the TGF-β pathway 
in CADASIL affects vascular smooth muscle cells (VSMCs), leading to vessel thickening, impaired functionality, and increased fibrotic thickening 
of vessels. Various molecules, including fibronectin, fibrillin- 1, and LTBP- 1, regulate the bioavailability of TGF-β. In CADASIL, the dysregulation 
of the TGF-β pathway and LTBP- 1 sequestration contribute to pathogenesis
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Table 1  In-vitro and in-vivo studies of the involvement of signaling pathways in CADASIL

Type of study Model/System used Key findings Reference(s)

In-vitro analyses
  iPSCs VSMCs, Fibroblasts, Myoblasts, HEK293, 

iPSCs
- Dysregulated activation of NOTCH 
signaling and NF-κB pathway
- Structural and functional aberrations 
in iPSCs
- NOTCH3ECD aggregates observed
- Altered PDGFRβ and VEGF levels 
in vascular mural cells
- Accumulation of NOTCH3ECD 
and GOM in CADASIL pathology
- Anomalies in mediators and micro-
filament structures

[15, 36, 138]

  Bri2 BRICHOS domain Stable cell lines, Protein modeling - Bri2 BRICHOS interacts with Aβ 
aggregates
- Counteracts Aβ42-induced neurotox-
icity and fibrillization
- Bri2 BRICHOS inhibits non-fibrillar 
aggregations
- Potential as a molecular chaperone 
for NOTCH3
- In vitro testing with stable cell lines 
showed reduced aggregation kinetics 
with Bri2 BRICHOS

[120]

  Glucose Transporters Cerebral VSMCs - Reduced GLUT2 and GLUT4 expres-
sions in CADASIL VSMCs
- ↓ glucose uptake in CADASIL patients

[123]

In-vivo animal analyses
  Drosophila Lethal-Abruptex Drosophila - Illustrates alterations in NOTCH3 

signaling and vascular structure
[7]

  Zebrafish NOTCH3 Mutants Zebrafish - Demonstrates alterations in NOTCH3 
signaling and vascular structure

[190]

  NOTCH3
Knock-Out Mice

Mice
NOTCH3−/−

- Exhibits CADASIL-related pathologi-
cal features, such as VSMC degenera-
tion, impaired cerebral vasoreactiv-
ity, changed myogenic response, 
and white matter lesions

[6, 9, 27, 35, 54, 55, 78, 90, 141]

  Transgenic mouse models Mice
R90 C,
R142 C,
R169 C,
C428S,
C455R,
R1031 C

- Express specific mutations in NOTCH3 
gene
- Replicate CADASIL pathological 
hallmarks
- VSMC degeneration,
- Impaired cerebral vasoreactivity,
- The lack of myogenic response
- Increased white matter lesions
- GOM accumulation and modified 
NOTCH3 activity

[8, 30, 44, 46, 68, 109, 119, 128, 139]

  Knock-In Conventional Mice
R170 C,
C142R

In C170 C: the absence of the CADASIL 
phenotype was seen
In C142R: elevated expression 
of NOTCH3 target genes
- Decreased cerebral artery diameter 
and impaired dilator capacity
- Increases in NOTCH3 signaling activity,

[8, 98, 170]

  Knock-In
Conditional

Mice
R1031 C
C455R

C455R results in early ischemic events
R1031 C leads to age-dependent 
hypomorphic phenotype,

[5]
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CADASIL VSMCs and brain microvessels, potentially 
contributing to the observed decrease in glucose uptake 
among CADASIL patients.

The correlation between CADASIL mutations, 
NOTCH3ECD accumulation, and disease severity has 
been investigated [15, 31, 102]. Increased levels of 
TIMP3, which co-aggregates with NOTCH3ECD has also 
been suggested to disrupt cerebrovascular reactivity, 
indicating a shared mechanism in CADASIL [43, 181].

The findings showed significant alterations in cellular 
phenotypes, such as reduced gene association with Wnt 
and TGFβ signaling, and the formation of NOTCH3ECD 
aggregates resembling the characteristic GOM observed 
in CADASIL patients. Additionally, the CADASIL blood 
vessel organoids exhibited modified gene expression pat-
terns associated with angiogenesis and vasculogenesis, 
underscoring the influence of the p.Arg75Gln mutation 
on vascular network formation. These insights high-
lighted the potential of iPSC-based 2-D and 3-D models 
in replicating disease-associated features and elucidating 
the underlying molecular mechanisms [15, 28, 43].

The diverse functionalities of Bri2 BRICHOS domain 
structures in Alzheimer’s disease and CADASIL were 
highlighted in a recent study [120]. The research revealed 
that Bri2 BRICHOS monomers and dimers interacted 
with amyloid-β (Aβ) aggregates, counteracting Aβ42-
induced neurotoxicity and fibrillization. Furthermore, 
Bri2 BRICHOS oligomers were found to inhibit non-
fibrillar aggregations. The observed molecular interac-
tions of BRICHOS with aggregates suggest its potential 
as a molecular chaperone for the NOTCH3 protein, 
potentially capable of delaying CADASIL progression. 
The researchers generated stable cell lines expressing 
NOTCH3 EGF1–5 wild type (WT) and R133 C. The ter-
tiary structures of NOTCH3 EGF1–5 was modeled, and 
circular dichroism spectra were recorded. Co-incuba-
tion with Bri2 BRICHOS and turbidity assays indicated 

reduced aggregation kinetics in the presence of Bri2 
BRICHOS. Negative-stain preparation and transmission 
electron microscopy imaging was also conducted to visu-
alize the samples.

In parallel, comprehensive analyses of the NOTCH3 
EGF1–5 proteins which focused on both the WT and 
R133 C mutant, by including protein generation and 
characterization, structural predictions, assessments of 
secondary structure, and aggregation studies with and 
without the presence of the Bri2 BRICHOS molecular 
chaperone, also revealed that under reducing conditions, 
both WT and R133 C proteins primarily existed in mon-
omeric states, indicating the absence of disulfide bridge-
dependent oligomer formation [36, 128]. Nonetheless, 
under non-reducing conditions, both proteins exhibited 
slower migration patterns, suggesting the formation of 
intramolecular disulfide bonds. Structural modeling 
unveiled a linear structure for both proteins, with the 
R133 C mutation having no significant impact on the 
overall tertiary structure of EGF1–5 [128, 140, 173]. 
The circular dichroism spectra demonstrated that two 
recombinant proteins adopted similar random coil-like 
structures, with the R133 C mutant appearing slightly 
more unstructured at higher temperatures [150, 186]. 
The study also demonstrated that the R133 C mutant dis-
played a higher propensity for aggregation compared to 
the wild-type counterpart [171].

The presence of the Bri2 BRICHOS chaperone stabi-
lized the mutant NOTCH3 protein, resulting in the for-
mation of soluble monomeric proteins. The effects of 
BRICHOS were dose-dependent, with a higher molar 
ratio leading to increased stabilization of the mutant 
proteins [186]. Additionally, the turbidity assay indicated 
that the presence of BRICHOS reduced the aggregation 
kinetics of the R133 C mutant by 50%. Transmission elec-
tron microscopy imaging further supported the findings, 
demonstrating that BRICHOS could stabilize the mutant 

Table 1  (continued)

Type of study Model/System used Key findings Reference(s)

  GOM Pathology Study CADASIL mouse model - Longitudinal study on GOM pathol-
ogy in CADASIL mouse model
- Temporal increase in GOM size 
and density
- No other typical CADASIL-related 
pathologies observed

  Impact of CADASIL mutations Transgenic mice - Investigated effects of NOTCH3 muta-
tions (R90 C and R169 C) on ischemic 
stroke outcomes
- No influence on residual tissue 
perfusion
- ↑ sensitivity to ischemia and suscepti-
bility to spreading depolarizations

[119]
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NOTCH3 protein, thereby preventing the formation of 
larger aggregated particles [171]. These results provide 
promising insights into the potential of BRICHOS as 
a therapeutic strategy for inhibiting the aggregation of 
CADASIL-mutated NOTCH3 proteins. Further investi-
gations are warranted to explore the applicability of this 
approach to other NOTCH3 mutations associated with 
CADASIL [120, 128].

Insights from in‑vivo studies
Early genetic studies of mutant Drosophila melanogaster 
[7, 163] gave rise to the discovery of the NOTCH gene. 
Here, this mutation produced wing ‘notches’, with this 
phenotypic presentation later contributing to the gene 
nomenclature. Since then, other experimental models 
have been employed to study NOTCH and NOTCH-
related signaling, with NOTCH homologs next identified 
in nematodes and zebrafish [190]. In the 1990’s, there 
was an influx of NOTCH-related biological and bio-
chemical studies in mammalian systems, likely due to the 
association of rare mutations of NOTCH reception with 

various human diseases [163]. To date, four NOTCH 
family receptors have been described in mammals, with 
NOTCH3 identified as the third mammalian NOTCH 
[81]. Amongst these four proteins, NOTCH3 displays a 
more restricted distributed tissue distribution, and thus 
targeted deletion does not lead to embryonic lethality 
a result observed in NOTCH1 [78] and NOTCH2 [50, 
101] knockout animals. In  vivo murine models have 
been developed to examine NOTCH3 mutations and 
related signaling with respect to the underlying patho-
logical mechanisms of CADASIL and role in prospec-
tive therapeutic applications. Mouse models like R170 
C incompletely mimic human CADASIL due to species 
differences in Notch3 function [98]. Table  2 has listed 
the most common experimental models for CADASIL-
related NOTCH3 dysfunctions.

NOTCH3 knock‑out
The knock-out (NOTCH3−/−) model has provided evi-
dence for the roles of NOTCH3−/− signaling in cerebro-
vascular maturation, homeostasis, and integrity [27], in 

Table 2  Experimental models of CADASIL

Knock-out
NOTCH3−/− 1. Arboleda-Velasquez JF, et al. (2008) [6]

2. Romay, et al. (2023) [137]
3. Eikermann-Haerter K, et al. (2011) [35]
4. Kofler N, et al. (2015) [35]
5. Domenga et al. (2004) [27]
6. Belin de Chantemèle EJ, et al. (2008) [35]
7. Henshall et al. (2015) [55]
8. Helle, 2022 (renal vasculature)  [54]
9. Krebs et al, 2003 (double KO mice; notch1/notch3)  [78]
10. Liu et al, 2010 [90]
11. Rusanescu et al., 2014 [141]

Conventional knock-in
R170 C 1. Wallays et al, 2011 [170]

2. Baron-Menguy, 2017 [8]
3. Li C et al., 2025 [85]

R142 C 1. Lundkvist et al, 2005 [98]

Conditional knock-in
R1031 C 1. Arboleda-Velasquez et al, 2011 [5]

C455R 1. Arboleda-Velasquez et al, 2011 [5]

Transgenic
R90 C 1. Oka et al, 2022 [119]

2. Monet et al, 2007 [109]
3. Ruchoux et al, 2003 [139]
4. Dubroca et al, 2005 [30]
5. Gu et al, 2012 [46]
6. Ping et al., 2021 [128]

R169 C 1. Oka et al, 2022 [119]
2. Joutel et al, 2010 [68]
3. Baron-Menguy, 2017 [8]

C428S 1. Monet-Leprêtre et al., 2009 [107]

R182 C 1. Gravesteijn et al, 2020 [44]
2. Rutten et al, 2015 [146]
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particular the impact of NOTCH3 in arterial formation. 
Notch3−/− mice exhibited enlarged arteries with thin-
ner and irregular VSMC profiles, as compared to WT 
mice, with these features prominent from Postnatal day 
28. In vitro studies suggested a direct effect of NOTCH3 
signaling on actin cytoskeletal dynamics, indicating a 
potential mechanism for the observed postnatal arte-
rial maturation of VSMC. The study mentioned the role 
of NOTCH3 is crucial for the postnatal maturation of 
VSMC to provide proper remodeling and orientation. 
The absence of NOTCH3 resulted in VSMC resem-
bling venous rather than arterial cells. In addition, it 
reduced expression of arterial markers like smoothelin. 
NOTCH3’s role appears autonomous to VSMC and it can 
have effect on cytoskeletal dynamics and enabling VSMC 
to respond to mechanical stress.

Romay et  al. [137] observed similar results with the 
age-dependent effect of arterial detachment and dis-
organization observed in Notch3−/− mice from 2 weeks 
of age [137]. Importantly, these authors showed that 
the arterial organization profiles were indistinguishable 
between 4-week-old NOTCH3−/− and 2-year-old WT 
animals. The downstream effects of the impaired vascu-
lar integrity of Notch3−/− animals caused loss of arterial 
VSMC and progressive loss of vessel coverage [90], lead-
ing to intermittent leakage, arterial dilation, and aneu-
rysm formation [55]. Interestingly, these outcomes are 
more prominently observed in larger diameter, rather 
than peripheral, arterioles. Moreover, impairment of 
NOTCH3 has been shown to increase the risk of brain 
injury. For example, a study by Arboleda-Velasquez JF et. 
al. showed that Notch3−/− mice present with larger infarct 
area and volume, and more pronounced cerebral blood 
flow (CBF) deficit and greater mortality rate following 
over 7 days (60% in Notch3−/− vs. 0% in WT) following 
a cerebral ischemia/reperfusion protocol [6]. The loss of 
NOTCH3 function in SMCs was shown to lead to down-
regulation of key targets Heyl and Hes1, and transcrip-
tional changes in genes which play crucial role in muscle 
contraction and cell structure. Notch3−/− mice showed a 
higher risk of ischemic damage, such as larger ischemic 
lesions, neurological deficits, and increased mortality 
due to middle cerebral artery occlusion. Laser speckle 
flowmetry indicates impaired blood flow regulation in 
Notch3−/− animals. This experiment introduced WT 
NOTCH3 in SMCs, and demonstrated recovery in stroke 
susceptibility due to crucial role of NOTCH3 in main-
taining vascular integrity. Overall, these studies provide 
evidence that NOTCH3 expression in SMCs is necessary 
for maintaining arterial integrity by securing long-term 
functionality and survival of VSMC of CNS arteries/arte-
rioles and plays a role in rescuing stroke susceptibility.

Further, NOTCH3 deficiency was shown to result 
in progressive loss of VSMCs, altering myotonic tone 
and increasing susceptibility to ischemic stroke [55]. 
The research identified a stepwise deterioration pro-
cess in VSMCs, which involved gradual degradation 
and clearance of cellular debris. Transcriptome profil-
ing of NOTCH3-deficient brain vasculature reveals sig-
nificant changes in gene expression, particularly within 
endothelial and mural cell-associated genes. The study 
emphasizes the selective impact of NOTCH3 on VSMC 
maintenance and function compared to pericytes. Nota-
bly, NOTCH3 deficiency is linked to vascular pathologies 
such as fibrin deposition, especially in areas with defec-
tive VSMC coverage. However, the observed vascular 
damage and intermittent leakage do not indicate a gen-
eral breakdown of endothelial junctions, as tight junc-
tional proteins remain unchanged. In addition, pericyte 
morphology shows no significant changes despite down-
regulated pericyte markers, highlighting the specific role 
of NOTCH3 in arterial VSMC maintenance.

Notch3 knock‑in rodents
There have been two conventional knock-in mice 
assessed to date, R142 C and R170 C to study CADASIL 
pathogenesis.

R142C knock‑in model  Interestingly, R142 C did not 
exhibit CADASIL pathological and neuroradiological 
symptoms up to 20 months of age, despite corresponding 
to the common human mutation R141 C.

The authors ruled out the possibility that the absence of 
the CADASIL phenotype was due to the altered expres-
sion or processing of R142 C NOTCH3 at the RNA or 
protein levels, rather suggesting that the species differ-
ence between human and murine Notch3 could explain 
why mice carrying the murine gene mutated at the Arg 
142 site did not express a CADASIL phenotype [98].

R170C knock‑in model  The mouse R170 C mutation (to 
mimic human R169 C mutation) presents with various 
CADASIL symptoms, including robust Notch3ECD depo-
sition in cerebral arteries at 4th and upregulated levels of 
Notch3, Nrip2, and Grip2 in brain arteries. HeyL expres-
sion did not experience statistically significant  difference. 
Moreover, the passive diameter of cerebral arteries from 
4-month-old Notch3 R170 C/R170 C mice was significantly 
decreased over a range of physiological pressures. These 
symptoms only occurred in a subset of the knock-in ani-
mals [8].
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Recent studies on the R170 C knock-in model 
have revealed impaired glymphatic influx and efflux, driven 
by reduced aquaporin-4 (AQP4) expression in astrocytic 
end feet. The process is regulated by the Notch3-RUNX1-
CMYB signalling axis. This disruption impairs waste 
clearance, accelerating brain senescence, as evidenced 
by increased perivascular spaces and brain atrophy. This 
impairment is associated with the Notch3 mutation, which 
disrupts AQP4 expression and subsequently affects glym-
phatic clearance. Furthermore, the research indicates that 
restoring AQP4 using adeno-associated virus (AAV) vec-
tors can enhance glymphatic function and potentially miti-
gate the aging processes associated with brain senescence 
in CADASIL. However, the precise timing of GOM forma-
tion and the full characterization of clinical phenotypes in 
these models remain incomplete [85]. Impaired glymphatic 
influx and efflux in R170 C mice hinder waste clearance, 
contributing to WMH and increased ischemic suscepti-
bility, as hallmarks of CADASIL, also observed in human 
patients with brain atrophy and enlarged perivascular 
spaces [85, 183].This dysfunction, driven by reduced AQP4 
expression in astrocytic end feet via the Notch3-RUNX1-
CMYB axis, may exacerbate cognitive decline by impairing 
clearance of neurotoxic metabolites [74–76, 183].

Baron-Menguy et al. investigated whether the R169 C 
mice mutation in the Notch3 gene contributes to specific 
alterations [8]. Researchers analyzed mice and found an 
increase in deposition of Notch3ECD in cerebral arteries, 
and elevated expression of Notch3 target genes. Addi-
tionally, the mice exhibited decreased cerebral artery 
diameter and impaired dilator capacity. The increases in 
Notch3 signaling activity in cerebral arteries is also men-
tioned as well as the influence of mutation context or 
overexpression on Notch3 activity which can result in a 
reduced lumen diameter, affecting vasodilator capacity. 
Notably, the observed impact on vascular structure is 
comparable to that seen in cases of chronic hypertension. 
The majority of CADASIL-associated Notch3 mutations 
with an odd number of cysteine residues in  Notch3ECD 
support the idea that other CADASIL mutations may 
increase Notch3 activity, but the reason behind this issue 
is unclear [8].

Conditional knock‑ins (C455R and R1031C)  The C455R 
and R1031 C mutations in the Notch3 gene are associated 
with CADASIL [5]. The C455R mutation, located in the 
ligand-binding domain (EGFR11), leads to early ischemic 
events. It results in stronger loss-of-function mechanism, 
as shown in in vitro experiments of using mouse embry-
onic fibroblasts [5]. In comparison, the R1031 C muta-
tion in EGFR26 is linked to a typical onset in the fourth 
decade of life. Both mutations have  exhibited an age-
dependent hypomorphic phenotype [4, 5].

Transgenic models
Potential CADASIL biomarkers have been identified 
from transgenic mice with these mutations, including 
increased plasma levels of COL18 A1, endostatin, and 
HTRA1, with proteomic analysis showing their presence 
in GOMs of CADASIL-affected arteries [4, 5]. Trans-
genic mouse models have been developed which express 
various Notch3 mutations, including R90 C, R169 C, 
C428S, and R182 C [100]. These models exhibit distinct 
CADASIL-related pathological features, including VSMC 
degeneration, impaired cerebral vasoreactivity [80], the 
lack of myogenic response [9], increased white matter 
lesions [68], GOM accumulation and modified Notch3 
activity [108]. For instance, in a transgenic mouse model, 
TgNotch3R90 C is defined as an archetypal CADASIL 
mutation located in the EGFR2 and its role is increasing a 
cysteine residue [30, 139].

The identified signs were VSMCs degeneration, such as 
cytoskeleton changes and defective anchorage to extra-
cellular matrix and cells in order to Notch3ECD deposi-
tion and GOM accumulation [46, 109]. Degeneration of 
VSMCs to the surrounding microenvironment led to an 
impaired myogenic response the impacts of stress, while 
agonist or receptor-induced tone remains unchanged. 
Furthermore, the increased actin polymerization in 
VSMCs results in higher myogenic tone of arteries. The 
altered flow-mediated dilation can occur due to an effect 
on endothelial cells indirectly. In addition, functional 
effects on cerebral vasoreactivity includes increased 
resistance of cerebral arteries [100, 108].

Altered cerebral blood flow regulation and increased 
hypotension susceptibility in a condition lead to height-
ened risk of ischemic events. In TgNotch3R90 C mice, 
pericytes show mitochondrial injury and autophagic 
degeneration, with unaffected Notch3 activity and no 
inhibition of WT Notch3 function by Notch3ECD aggre-
gates [8, 119].

TgNotch3R182 C mice, consist of the human Notch3 
gene. These mice depict gradual increasing age- and 
Notch3 RNA expression level-dependent vascular accu-
mulation of NOTCH3 and GOM deposition [44, 146], 
but do not result in brain parenchymal lesions. This find-
ing illustrated the importance of the “NOTCH3 score” 
as quantitative biomarker for CADASIL, as a proper 
model for pre-clinical testing of therapeutic approaches 
[44]. Using a longitudinal mouse model which overex-
pressed human NOTCH3 protein [44], the study classi-
fied the GOM into five stages based on size, morphology, 
and electron density. There was a temporal increase in 
GOM size and density, yet the mice did not show other 
typical CADASIL-related pathologies, such as changes in 
smooth muscle actin staining, BBB leakage, and cogni-
tive and motor dysfunctions. GOM count, size, and the 
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percentage of GOM-positive vessels increased over time. 
Notably, GOM deposits were predominantly located on 
the abluminal side of mural cells. In CADASIL patients, 
GOM deposits were observed in 96% of microves-
sels, with stage IV being the most frequent. Patients’ 
microvessels also contained large confluent patches of 
GOM (stage V) not observed in mice. The electron den-
sity of GOM in patients was less homogeneous than in 
mice.

In TgNotch3R169 C mice, the Notch3R169 C mutation 
model of CADASIL exhibits early WM lesions, hypop-
erfusion, and altered myogenic response due to abnor-
mal hyperpolarization in arterioles and VSMCs [68]. The 
mice show impaired Notch3 function in hippocampal 
precursor cells, which leads to a decrease in neurogene-
sis, and the R169 C Notch3 mutation resulted in cognitive 
decline and vascular phenotypic changes. Additionally, 
the model confirms the involvement of endoplasmic 
reticulum stress and RhoA/Rho kinase in CADASIL 
pathogenesis, along with implications for BBB disruption 
and reduced pericyte coverage in cortical vessels [8, 30, 
40, 119].

C428S mutation in the NOTCH3 human gene 
expressed under the control of the murine SM22α pro-
moter (TgNOTCH3C428S) resulted in a loss of WT 
NOTCH3 activity and a mild dominant negative effect. 
NOTCHECD accumulation was shown to induce the 
abnormal recruitment of extracellular matrix proteins, 
including tissue inhibitor of TIMP3 and vitronectin, 
whose dysregulation contributes to the toxicity of these 
aggregates on small vessels [107, 108].

A transgenic mouse model investigated the impact of 
CADASIL NOTCH3 mutations (R90 C and R169 C) on 
ischemic stroke outcomes, aiming to understand the 
underlying mechanisms and processes [119]. CADASIL 
mutations did not seem to influence residual tissue per-
fusion, instead, the research suggested that the brain tis-
sue of the transgenic mice required a higher amount of 
blood flow to survive, indicating an increased sensitivity 
to ischemia. There was also an elevated susceptibility to 
spreading depolarizations in CADASIL mutant mice, 
contributing to a more severe stroke phenotype. Specifi-
cally, the mutations were linked to abnormal extracellular 
ion homeostasis, particularly potassium, which impacted 
the brain’s response to ischemic injury. These findings 
suggested that the observed vulnerability to ischemic 
injury in CADASIL might be associated with an impaired 
ability to handle extracellular potassium and an increased 
susceptibility to spreading depolarization. The study also 
noted that a vascular defect, particularly in pericytes and 
SMCs which express Notch3, can cause abnormal potas-
sium ion buffering in the brain. Therefore, therapeutic 
implications targeting SDs and improving potassium 

homeostasis may mitigate the impact of CADASIL muta-
tions on ischemic outcomes, independent of vasomotor 
dysfunction.

A mechanistic study on TgNotch3R90 C mouse model of 
CADASIL depicted that stem cell factor (SCF) + granu-
locyte colony-stimulating factor (G-CSF) enhances brain 
repair and improves cognitive recovery through VEGF-
A-mediated angiogenesis [129]. The treatment restores 
neurovascular networks, including dendrites, axons, syn-
apses, and neurogenesis, which are positively correlated 
with cognitive improvements. The study emphasizes 
the requirement of VEGF-A-mediated angiogenesis for 
the enhanced brain repair and cognitive recovery in this 
CADASIL mouse model. The study reveals that reduced 
levels of cerebral VEGF/VEGF-A in TgNotch3R90 C 
mice are associated with decreased blood vessel density, 
neural structure density, synapses, and neurogenesis.

A transgenic mouse model using TgNotch3R90 C 
mice as a CADASIL model, explored the impacts of SCF 
and G-CSF treatment on cerebral capillary thrombosis 
and associated neuron loss [128]. The research demon-
strated the distribution of capillary thrombosis in the 
brain, the correlation between capillary thrombosis and 
ischemic neuron loss, and the potential of SCF + G-CSF 
treatment in mitigating microvascular ischemic damage 
in these mice. Using bone marrow transplantation, the 
researchers tracked blood clots, while employing immu-
nohistochemistry techniques to assess neuron loss in the 
cerebral cortex regions surrounding thrombotic capillar-
ies. Notably, the study revealed that capillary thrombosis 
predominantly occurred in the cortex of the TgNotch3R90 C 
mice, with noticeable neuron loss detected in the areas 
surrounding thrombotic capillaries, particularly those 
with bifurcations. Ultimately, the administration of SCF 
+ G-CSF treatment demonstrated a notable reduction in 
neuron loss adjacent to thrombotic capillaries, indicat-
ing potential neuroprotective effects of this treatment 
regimen.

A study established NOTCH3ECD immunotherapy 
as a potential therapeutic method with a mouse mono-
clonal antibody (5E1) [39]. 5E1 binds NOTCH3ECD 
deposits in brain vessels and results in disease-related 
phenotypes. This process assessed in mouse model. It 
showed NOTCH3ECD and GOM deposition, WM lesions, 
and cerebral blood flow deficits. In this study quantitative 
immunohistochemistry, as well as electron microscopy, 
and Laser-Doppler flowmeter. Ultimately, a single periph-
eral injection of 5E1 robustly induced NOTCH3ECD 
deposits in the brain vessels. Long term evaluation of 
5E1 demonstrated that NOTCH3ECD or GOM deposition 
could not be lessen and perivascular microglial had not 
been activated. It also could not reduce development of 
white matter lesions. However, 5E1 treatment markedly 
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protected against impaired cerebral blood flow responses 
to neural activity and topical application of vasodilators 
and normalized myogenic responses of cerebral arteries.

Diagnostic challenges
CADASIL faces significant underdiagnosis due to mul-
tifaceted challenges that intersect clinical, genetic, and 
educational domains. Regarding its clinical overlaps, 
CADASIL shares phenotypic features with multiple 
inherited CSVDs, including CARASIL (cerebral autoso-
mal recessive arteriopathy with subcortical infarcts and 
leukoencephalopathy), Fabry disease, and COL4 A1/2-
related disorders. For instance, Fabry disease presents 
with albuminuria and angiokeratomas, but its neurologi-
cal manifestations such as small vessel strokes overlap 
with CADASIL. CARASIL and HTRA1-related CSVD 
also mimic CADASIL’s white matter changes but differ in 
systemic features like alopecia and skeletal abnormalities. 
Hereditary angiopathy, nephropathy, aneurysms, and 
muscle cramps (HANAC) syndrome and RVCL-S further 
complicate differentiation due to shared stroke risks but 
distinct extracerebral involvement, including retinal vas-
culopathy in RVCL-S. This overlap often leads clinicians 
to misattribute symptoms to more common conditions 
resembling MS or hypertension-related CSVD [103, 162].

CADASIL also exhibits marked variability in symptom 
onset and severity. MA affects ~ 30% of patients, typically 
emerging at age 30, but atypical forms, such as confu-
sional aura or encephalopathy may mimic psychiatric or 
epileptic disorders. Ischemic strokes occur at a mean age 
of 49, yet 20% present before age 40, with MRI findings 
(anterior temporal lobe hyperintensities, lacunar infarcts) 
often misinterpreted as age-related changes. Non-neu-
rological red flags are absent despite systemic vascular 
pathology, unlike Fabry disease or RVCL-S [103, 160].

Another challenge in this context is limited clini-
cian awareness and diagnostic delays. CADASIL affects 
2–5/100,000 individuals, but less than 2% of younger-
onset lacunar strokes are linked to genetically confirmed 
cases. While neurologists may recognize stroke patterns, 
psychiatrists often overlook CADASIL in patients pre-
senting with depression, apathy, or vascular dementia. 
Only 12% of CADASIL-associated strokes occur without 
vascular risk factors, further masking its genetic etiol-
ogy. Furthermore, although NOTCH3 mutation testing 
is available, interpretation is complicated by variants of 
uncertain significance, such as cysteine-sparing muta-
tions [103, 160, 162]. Upon systemic challenges in diag-
nosis, pathognomonic anterior temporal lobe lesions 
are present in MRI findings of 90% of cases but require 
targeted imaging protocols. Family history of early-onset 
stroke or migraine is frequently overlooked, delaying cas-
cade testing [162].

Consequently, delayed diagnosis exacerbates morbid-
ity, as 75% develop cognitive impairment by their fourth 
decade, and recurrent strokes lead to stepwise dementia. 
While no disease-modifying therapies exist, early diagno-
sis enables risk factor management (e.g., avoiding antico-
agulants due to microbleed risks) and familial screening.

To overcome these challenges, CADASIL can be inte-
grated into neurology and psychiatry training, empha-
sizing red flags such as MA in young adults. Combining 
neuroimaging expertise with genetic counseling can also 
be beneficial to address diagnostic complexities. Last, 
prioritizing studies on NOTCH3 signaling pathways and 
immune dysregulation to identify therapeutic targets.

Therapeutic implications
Understanding the intricate interplay between genetic 
mutations, signaling pathways, and disease-modify-
ing genes will assist in the development of therapeutic 
options for CADASIL (Table  3). The identification of 
disease-modifying genes, such as RNF213, has under-
scored the significant genetic landscape contributing 
to CADASIL pathophysiology [186]. These findings 
emphasize the need for targeted therapeutic approaches 
directed at modulating specific components of the 
disease pathway to alleviate the disease’s burden and 
enhance patient outcomes [14, 108]. Adrenomedullin has 
an effect on oligodendrocyte precursor cells which could 
potentially compensate for the death of oligodendrocytes 
in CADASIL, through the resulting increase in the phos-
phorylated Akt cell survival signal [152]. Adrenomedul-
lin may also have a role in promoting angiogenesis and 
inhibiting microglial activation and inflammation, which 
are observed features in CADASIL [61].

There is evidence that both hypomorphic and hyper-
morphic NOTCH3 activities can be associated with 
NOTCH3 mutation models, implying that maintaining 
an optimal range of NOTCH3 signaling is essential for 
vascular health [150]. The therapeutic implications uti-
lizing an A13 NOTCH3 agonist antibody in CADASIL 
mice, the study demonstrates prevention of mural cell 
loss in small-caliber vessels, as evidenced by smooth 
muscle actin staining in retinal vasculatures [99]. The 
A13 antibody treatment also leads to a reversal of plasma 
biomarker changes, including NOTCH3ECD, endosta-
tin, IGFBP- 1, and HTRA1. Study found the therapeutic 
potential of the A13 NOTCH3 agonist antibody in the 
context of CADASIL [99].

New treatments targeting NOTCH3 signaling have 
gained attention because they might affect the root causes 
of diseases like CADASIL. One promising approach 
involves the use of the A13 NOTCH3 agonist anti-
body, which has shown efficacy in preclinical models 
by preventing mural cell loss and normalizing plasma 
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biomarkers like NOTCH3ECD and HTRA1 [34]. This sug-
gests that the A13 antibody could be a viable strategy for 
restoring NOTCH3 signaling balance, thereby improving 
vascular health and function [178]. Other possible treat-
ments are also being studied. One example is controlling 
the TGF-β pathway, which could reduce fibrosis (stiffen-
ing) of blood vessels and improve the function of VSMCs. 
These new methods highlight how important it is to focus 
on NOTCH3 signaling when developing treatments for 
vascular diseases [34, 41].

Conclusions
The NOTCH3 signaling pathway plays a critical role in 
the integrity of vascular walls and the function of vascu-
lar smooth muscle cells. Key insights from recent stud-
ies have highlighted the decline in NOTCH3 signaling as 
a biomarker for vascular aging and neurodegeneration, 
which is particularly relevant in the context of CADASIL. 
Mutations in the NOTCH3 gene disrupt normal vascular 
function, leading to protein deposits and vascular inju-
ries that are characteristics of CADASIL. In addition to 
the NOTCH3 pathway, the TGF-β signaling pathway also 
plays a significant role in the pathogenesis of CADASIL. 
The deregulation of TGF-β signaling is closely associated 
with the recruitment of LTBP-1 into NOTCHECD depos-
its and the overexpression of LAP within the affected ves-
sels, altering TGF-β bioavailability and contributing to 
the disease’s progression.

Currently, there is no cure or specific therapy for 
CADASIL. However, supportive care, including practical 
help, emotional support, and counseling, is recommended 
for affected individuals and their families. Migraines, a 
common symptom, should be treated symptomatically and 

with preventative methods. Future studies in this context 
should focus on larger patient cohorts and longer follow-
up periods to better predict risks and define outcomes that 
matter to patients, which will aid in designing therapeutic 
trials. Moreover, novel measurements and more precise 
CADASIL models should be employed to compare with 
the progressive loss of NOTCH3 function observed in the 
aging process.

Underdiagnosis of CADASIL could be addressed by 
wider use of genetic screening and advanced imaging like 
7 T-MRI. National and international collaborations will 
also help advancing research into vascular contributions 
to cognitive decline.
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Table 3  Therapeutic implications of CADASIL-related signaling pathways

Therapeutic target or 
Signaling pathway

Therapeutic strategy 
(gene therapy, drug, 
etc.)

Study model Monitoring method Is it clinically 
applicable?

Reference (s)

NOTCH3 Signaling 
Pathway

BRICHOS molecular 
chaperone

In vitro (cell lines) Turbidity assays, TEM 
imaging

Potential for in vivo test-
ing in CADASIL mouse 
model

 [171]

NOTCH3 Signaling 
Pathway

NOTCH3-knockout Mouse models Structural arterial defects, 
BBB leakage, BOLD brain 
MRI scans

Complex effects on cer-
ebrovascular integrity, 
may increase susceptibil-
ity to ischemic strokes

[3, 9, 29, 55, 56]

TGF-β Signaling Pathway Modulation of TGF-β 
signaling

Not specified Molecular evaluations Not specified  [72, 156]

Disease-Modifying Genes Modulation of TIMP3 
and vascular fibronectin

Not specified Not specified Not specified  [14, 108, 186]

Adrenomedullin (AM) Potential benefits 
in addressing CADASIL

Not specified Not specified Not specified  [61]

Stem Cell Factor (SCF) 
and Granulocyte Colony-
Stimulating Factor (G-CSF)

Treatment for cerebral 
capillary thrombosis

TgNOTCH3R90 C mice Bone marrow transplan-
tation, immunohisto-
chemistry

Potential neuroprotective 
effects observed

 [128]
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