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Abstract
Background  Migraine ranks as the second-leading cause of global neurological disability, affecting approximately 
1.1 billion individuals worldwide with severe quality-of-life impairments. Although adjustable risk factors—including 
environmental exposures, sleep disturbances, and dietary patterns—are increasingly implicated in pathogenesis 
of migraine, their causal roles remain insufficiently characterized, and the integration of multimodal evidence lags 
behind epidemiological needs.

Methods  We developed a three-step analytical framework combining causal inference, predictive modeling, and 
burden projection to systematically evaluate modifiable factors associated with migraine. First, two-sample mendelian 
randomization (MR) assessed causality between five domains (metabolic profiles, body composition, cardiovascular 
markers, behavioral traits, and psychological states) and the risk of migraine. Second, we trained ensemble machine 
learning (ML) algorithms that incorporated these factors, with Shapley Additive exPlanations (SHAP) value analysis 
quantifying predictor importance. Finally, spatiotemporal burden mapping synthesized global incidence, prevalence, 
and disability-adjusted life years (DALYs) data to project region-specific risk and burden trajectories through 2050.

Results  MR analyses identified significant causal associations between multiple adjustable factors (including 
overweight, obesity class 2, type 2 diabetes [T2DM], hip circumference [HC], body mass index [BMI], myocardial 
infarction, and feeling miserable) and the risk of migraine (P < 0.05, FDR-q < 0.05). The Random Forest (RF)-based 
model achieved excellent discrimination (Area under receiver operating characteristic curve [AUROC] = 0.927), 
identifying gender, age, HC, waist circumference [WC], BMI, and systolic blood pressure [SBP] as the predictors. Burden 
mapping projected a global decline in migraine incidence by 2050, yet persistently high prevalence and DALYs 
burdens underscored the urgency of timely interventions to maximize health gains.

Conclusions  Integrating causal inference, predictive modeling, and burden projection, this study establishes 
hierarchical evidence for adjustable migraine determinants and translates findings into scalable prevention 
frameworks. These findings bridge the gap between biological mechanisms, clinical practice, and public health policy, 
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Introduction
Migraine, one of the most disabling neurological disor-
ders globally, has emerged as a critical public health chal-
lenge in the 21st century. Epidemiological data reveal that 
it afflicts approximately 14% of the global population, 
with a threefold higher prevalence in women than men, 
underscoring its sex-specific pathophysiological charac-
teristics [1]. Clinically, migraine is classified by the Inter-
national Classification of Headache Disorders 3rd edition 
(ICHD-3) into distinct subtypes (including migraine 
with aura, chronic migraine, and vestibular migraine), 
and their heterogeneity reflects diverse neurovascular 
mechanisms that differentially impact disease progres-
sion and treatment response [2, 3]. Beyond its clinical 
toll, migraine incurs annual productivity losses exceeding 
$11 billion (USD) in high-income countries alone, under-
scoring an urgent need for targeted prevention strategies 
[4]. Despite advances in identifying multidimensional 
pathogenic factors, such as metabolic dysregulation and 
autonomic dysfunction, a systematic evaluation of causal 
hierarchies among adjustable factors—particularly those 
amenable to population-level interventions—remains 
absent, with fewer than 15% of existing studies integrat-
ing genetic and machine learning (ML) approaches [5, 6].

The metabolic, body composition, cardiovascu-
lar, behavioral, and psychological domains collectively 
encompass adjustable determinants of health and dis-
ease, and have often been targeted in the past as key areas 
for intervention. Migraine pathophysiology has been 
robustly associated with adjustable factors spanning sleep 
architecture disturbances, anthropometric variation, psy-
chological distress (including anxiety, depression, and 
post-traumatic stress), and cardiovascular dysregulation 
[7–9]. Emerging evidence further implicates intricate 
networks involving metabolic-cardiovascular-behavioral 
interactions in migraine progression. For instance, obe-
sity and diabetes may exacerbate migraine susceptibility 
through inflammatory pathways, while migraine-associ-
ated neuropeptides (e.g., calcitonin gene-related peptide) 
could impair glucose metabolism [10, 11]. Cardiovascu-
lar risks, notably the dose-response relationship between 
elevated diastolic blood pressure and migraine suscepti-
bility in women, highlight hemodynamic alterations as 
potential mechanistic drivers [12]. Notably, childhood 
adversity, including physical abuse and peer victimiza-
tion, elevates migraine risk by 2.3-fold, emphasizing 
the long-term consequences of environmental stressors 
during neurodevelopmentally sensitive periods [13–
15]. While emerging Mendelian randomization (MR) 

studies have begun untangling adjustable risk factors for 
migraine, persistent inconsistencies across domains raise 
concerns about the directionality and biological plausibil-
ity of reported associations, particularly in metabolic and 
psychological traits [16–19]. These discrepancies hinder 
the prioritization of intervention targets.

ML, a paradigm enabling autonomous pattern recogni-
tion from complex datasets, has demonstrated transfor-
mative potential in predictive modeling and therapeutic 
innovation [20, 21]. Unlike conventional statistical meth-
ods, ML supports personalized risk stratification, pre-
dictive analytics, and dynamic intervention modeling 
[22, 23]. This study introduced a tripartite framework 
integrating causal inference, risk prediction, and burden 
mapping. First, MR was employed to elucidate causal 
effect of 23 candidate factors. Subsequently, ML algo-
rithms quantified multidimensional risk contributions 
to develop individualized predictive models. Finally, we 
project migraine burden to evaluate the population-level 
impact of interventions, providing actionable evidence 
for global health policy.

Method
Study design
In MR studies, the validity of causal effect estimation 
relies on three core assumptions for single nucleotide 
polymorphisms (SNPs) serving as instrumental variables 
(IVs). First, selected IVs must exhibit robust genetic asso-
ciations with the target exposure (P < 5 × 1008) to mitigate 
bias from weak instruments. Second, IVs must adhere to 
the exclusion restriction criterion, ensuring that SNPs 
influence the outcome exclusively through the target 
exposure, thereby eliminating pleiotropic or confounding 
effects. Third, IVs must remain independent of known 
confounding factors to preserve causal inference validity. 
These assumptions collectively underpin MR methodol-
ogy and require rigorous evaluation through sensitivity 
analyses and horizontal pleiotropy tests.

This study employed a tripartite analytical frame-
work, as illustrated in Fig.  1. First, a two-sample MR 
analysis was conducted to evaluate causal associations 
between adjustable risk factors and migraine risk across 
five domains: metabolic traits (fasting blood glucose, 
high-density lipoprotein cholesterol [HDL-C], low-
density lipoprotein cholesterol [LDL-C], type 2 diabetes 
mellitus [T2DM]), body composition (obesity, obesity 
class 2, overweight, body mass index [BMI], waist-hip 
ratio [WHR], waist circumference [WC], hip circum-
ference [HC]), cardiovascular health (diastolic blood 

providing a tripartite framework that harmonizes causal inference, individualized risk prediction, and global burden 
mapping for migraine prevention.
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pressure [DBP], systolic blood pressure [SBP], myocar-
dial infarction), behavioral factors (smoking initiation, 
snoring, moderate-to-vigorous physical activity lev-
els, vigorous physical activity), and psychological states 
(irritable mood, feelings of loneliness, misery, guilt, and 
nervousness). Subsequently, factors demonstrating sig-
nificant causal associations with migraine were priori-
tized for predictive modeling. Eight ML algorithms were 
implemented, each subjected to hyperparameter tuning 

and 10-fold cross-validation to optimize performance 
robustness. Model predictive accuracy was quantified 
using the area under the receiver operating characteris-
tic curve (AUROC), while Shapley additive explanations 
(SHAP) were applied to interpret feature importance in 
top-performing models. Finally, a Bayesian age-period-
cohort (BAPC) model was utilized to project the global 
burden of migraine from 2022 to 2050, integrating demo-
graphic and epidemiological trends to estimate incidence, 

Fig. 1  The basic design of the study. A. The basic principles and framework of MR study. This study follows the 3 core assumptions of MR Design (correla-
tion, independence and exclusivity), and uses IVW, WM, MR-Egger and weighted model methods as the main analysis methods for causal associations. B. 
Construct risk prediction model based on 8 ML methods. Step 1: identify key features; Step 2: data prepossess; Step 3: model construction; Step 4: model 
construction; Step 5: model interpretation. Abbreviations: IVW, Inverse Variance Weighted; WM, Weighted Median; MR_PRESSO, MR Pleiotropy RESidual 
Sum and Outlier test; MR, Mendelian Randomization; RF, Random Forest; GLM: Generalized Linear Model; KNN, K-Nearest Neighbor; SVM, Support Vector 
Machine; GBM, Gradient Boosting Machine; NNET, Neural Network; DT, Decision Tree; LASSO, Least Absolute Shrinkage And Selection Operator; SHAP, 
SHapley Additive exPlanations; AUROC, Area Under the Receiver Operating Characteristic Curve; ML, Machine Learning
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prevalence, and disability-adjusted life years (DALYs), 
which combine years lived with disability (YLDs) and 
years of life lost (YLLs) due to premature mortality.

Data sources and statistical analysis
MR analysis
Genetic instruments for 23 adjustable risk factors and 
self-reported migraine were obtained from the IEU Open 
Genome-Wide Association Study (GWAS) database 
(https://gwas.mrcieu.ac.uk/, accessed on 30 March 2025). 
The dataset was derived from the UK Biobank using 
Phenome-Wide Association Study (PheWAS)-derived 
variables through GWAS pipelines. All summary-level 
genetic data were sourced directly from IEU Open 
GWAS, and no additional ethical review was required 
for this publicly available aggregated data. Detailed data 
sources are provided in Table S1.

To estimate causal associations between adjustable risk 
factors and migraine, we selected IVs adhering to the 
three core assumptions of MR analysis (relevance, inde-
pendence, and exclusion restriction). The following steps 
were implemented to minimize bias: Only IVs identified 
in European-ancestry populations were included, in order 
to reduce confounding due to population stratification 
[24]. Subsequently, based on the correlation hypothesis, 
a threshold of P < 5 × 10− 08 and the standard of linkage 
disequilibrium (LD) (r2 = 0.001, kb = 10,000) were used to 
screen IVs. A total of 14 SNPs for fasting blood glucose, 
46 for HDL-C, 42 for LDL-C, 67 for T2DM, 6 for obesity, 
11 for obesity class 2, 14 for overweight, 11 for BMI, 3 
for WHR, 2 for WC, 52 for HC, 4 for DBP, 4 for SBP, 80 
for myocardial infarction, 91 for smoking initiation, 3 for 
snoring, 19 for moderate to vigorous physical activity lev-
els, 7 for vigorous physical activity, 38 for irritable mood, 
7 for feeling lonely, 35 for feeling miserable, 13 for feeling 
guilty, and 35 for feeling nervous were identified from the 
genome-wide correlation SNPs. The F-statistic was used 
to assess the strength of included IVs, and the R2 statistic 
was used to assess phenotypic interpretability, calculated 
as follows [25]:

F = (R2× (n − k − 1)) / (k × (1 − R2));
R2 = 2 × ((1 − MAF) × MAF × beta),
n is the sample size, and k denotes the number of IVs. 

All selected SNPs met F-statistic > 10, indicating minimal 
weak instrument bias.

Inverse variance-weighted (IVW) and weighted median 
(WM) methods were jointly employed in the two-sample 
MR (TSMR) framework to evaluate causal associations, 
with concordant results (P < 0.05) considered statisti-
cally significant [26]. Under the assumption of no hori-
zontal pleiotropy, IVW is recognized as the most robust 
estimator. To mitigate potential bias arising from invalid 
IVs, WM analysis was incorporated as a supplemen-
tary approach. The WM method demonstrates superior 

accuracy and reduced type I error rates when up to 50% 
of IVs are invalid, ensuring reliable causal inference [27]. 
For comprehensive validation, MR-Egger regression and 
weighted mode methods were implemented as sensitivity 
analyses, with directional consistency confirmed across 
all four approaches. Rigorous sensitivity analyses were 
conducted to assess result stability. Steiger directional-
ity tests were applied to confirm that variance in adjust-
able factors SNPs explained significantly greater variance 
in exposure than in outcomes (all Steiger-P < 0.001), thus 
minimizing the possibility of reverse causation [28]. 
Horizontal pleiotropy was tested via Mendelian Ran-
domization Pleiotropy Residual Sum and Outlier (MR-
PRESSO), while heterogeneity among IVs was evaluated 
using Cochran’s Q test (P > 0.05 indicating absence of 
significant heterogeneity and pleiotropy) [29, 30]. Leave-
one-out analysis was performed to identify potential 
bias from individual SNPs [31]. To address multiple test-
ing concerns, false discovery rate (FDR) correction was 
applied to P-values, minimizing false-positive findings. 
Associations meeting both nominal significance (P < 0.05 
in both IVW and WM analyses) and the FDR-adjusted 
threshold (FDR-q < 0.05) were classified as robust causal 
evidence.

Construction of ML-based prediction models
The development of ML models utilized data from the 
National Health and Nutrition Examination Survey 
(NHANES) spanning 1999–2004. The dataset encom-
passed baseline characteristics including gender, age, 
race, income, and marital status, along with five major 
health dimensions: metabolic indicators (glycohemoglo-
bin [HbA1c], HDL-C, LDL-C, T2DM), body composi-
tion (obesity, overweight, BMI, WC, HC), cardiovascular 
health (hypertension, SBP, DBP, myocardial infarction), 
behavioral factors (smoking initiation, comparison of 
activities with peers), and psychological aspects (feelings 
guilty and nervous).

The dataset was randomly partitioned into training 
(70%) and testing (30%) sets. Due to the potential impact 
of complex high-dimensional data on ML algorithm per-
formance, we employed the Boruta algorithm for feature 
selection prior to model construction. This method iden-
tifies important predictors by iteratively comparing the 
importance of original features with that of randomly 
generated shadow variables, thereby, enhancing model 
interpretability, preventing overfitting, and optimizing 
model efficiency [32]. Following feature selection, Syn-
thetic Minority Over-sampling Technique (SMOTE) was 
applied to achieve a balanced distribution between case 
and control groups in the training set.

Eight distinct ML approaches were implemented: 
Random Forest (RF), Support Vector Machine (SVM), 
Generalized Linear Model (GLM), Gradient Boosting 

https://gwas.mrcieu.ac.uk/
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Machine (GBM), K-Nearest Neighbors (KNN), Neural 
Network (NNET), Least Absolute Shrinkage and Selec-
tion Operator (LASSO), and Decision Tree (DT). Each 
model was selected based on its unique advantages. RF 
demonstrated strong ensemble learning capabilities and 
resistance to overfitting; SVM excelled in high-dimen-
sional space classification; GLM offered flexible response 
variable distribution assumptions; GBM achieved effi-
cient prediction through iterative loss function optimi-
zation; KNN provided straightforward instance-based 
learning suitable for various tasks; NNET led in deep fea-
ture extraction and complex pattern recognition; LASSO 
implemented variable selection and model simplification 
through L1 regularization; and DT offered interpretable 
tree structures particularly effective in classification and 
regression tasks. Each ML model underwent hyperpa-
rameter tuning and ten-fold cross-validation to optimize 
performance and ensure model reliability. AUROC was 
employed to evaluate model predictive accuracy, with 
higher values indicating superior prediction capability 
(range: 0.5-1.0) [33]. Additionally, SHAP methodology 
was applied to elucidate the most effective prediction 
model. Based on game theory principles, SHAP allocated 
feature contributions to prediction outcomes, providing 
consistent and fair interpretations commonly used in 
explaining ML model predictions [32]. Finally, to increase 
the utility of the ML model, we developed a web platform 
embedding it.

Global mapping of migraine burden
We used the Global Health Data Exchange (GHDx) 
query tool (​h​t​t​p​​s​:​/​​/​v​i​z​​h​u​​b​.​h​​e​a​l​​t​h​d​a​​t​a​​.​o​r​g​/​g​b​d​-​r​e​s​u​l​t​s​/) 
to extract data related to the incidence, prevalence, and 
disease burden of migraine. The GBD 2021 provided esti-
mates for 371 types of diseases and injury burdens across 
204 countries and 811 regions from 1990 to 2021, using 
95% uncertainty intervals (UIs) to reflect the range of cer-
tainty for an estimate.

The BAPC model combines the integrated nested 
Laplacian approximation (INLA) for posterior estimation 
(with 10,000 iterations) and Monte Carlo simulation for 
quantified uncertainty assessment to evaluate the global 
migraine trend across three epidemiological dimensions: 
(1) age effects quantifying biological risk progression, 
(2) period effects monitoring population-level envi-
ronmental influences, and (3) cohort effects tracking 
birth-generation specific exposures [34]. Monte Carlo 
simulations generated 95% credible intervals that rigor-
ously accounted for parameter uncertainty and Poisson-
distributed stochastic noise. The framework enabled the 
simulation of policy interventions by modulating period 
effect parameters while maintaining demographic con-
sistency through WHO-standardized population struc-
tures. All of the statistical analyses were conducted in R 

environment (version 4.3.1) and R packages are listed in 
Table S2.

Results
Causal relationships between adjustable risk factors and 
migraine
Based on the specified selection criteria, we identi-
fied 502 adjustable risk factor-related SNPs for analysis, 
encompassing 13 fasting blood glucose, 39 HDL-C, 35 
LDL-C, 59 T2DM, 4 obesity, 7 obesity class 2, 9 over-
weight, 7 BMI, 2 WHR, 1 WC, 52 HC, 3 DBP, 4 SBP, 64 
myocardial infarction, 78 smoking initiation, 2 snoring, 
18 moderate to vigorous physical activity levels, 5 vig-
orous physical activity, 35 irritable mood, 6 feelings of 
loneliness, 31 feelings of misery, 10 feelings of guilt, and 
27 feelings of nervousness. All variants demonstrated 
F-statistics > 10, indicating robust instrumental variables 
resistant to weak instrument bias (Table S3). The pheno-
typic variance explained by each instrument, is presented 
in Fig. 2A.

We investigated causal relationships between 23 
adjustable risk factors and migraine using TSMR analy-
sis. IVW method results with FDR correction revealed 
significant associations with decreased migraine risk 
for T2DM (OR = 0.998, 95% CI: 0.996, 0.999, P = 0.005, 
FDR-q = 0.016), obesity class 2 (OR = 0.995, 95% CI: 
0.993, 0.998, P = 1.00 × 10− 04, FDR-q = 0.001), overweight 
(OR = 0.989, 95% CI: 0.985, 0.993, P = 2.11 × 10− 08, FDR-
q = 4.64 × 10− 07), BMI (OR = 0.991, 95% CI: 0.985, 0.997, 
P = 3.13 × 10− 03, FDR-q = 0.014) and myocardial infarc-
tion (OR = 0.995, 95% CI: 0.993, 0.998, P = 6.17 × 10− 04, 
FDR-q = 0.003) (Fig. 2B & Table S4). Conversely, feeling 
miserable (OR = 1.017, 95% CI: 1.007, 1.028, P = 6.14 × 
10− 04, FDR-q = 0.003) showed positive correlations with 
increased risk of migraine (Table S4). The WM method 
yielded consistent results, further supporting these asso-
ciations (Table S4). No evidence of horizontal pleiotropy 
or heterogeneity was observed (P > 0.05) (Table S4). The 
Steiger directionality test showed that there is no reverse 
causality (Table S5).

Assessment of migraine prediction effect based on ML
In this study, the Boruta algorithm augmented with 
shadow features was employed to systematically identify 
significant predictors from an initial pool of candidate 
features (including gender, age, race, income, marital 
status, WC, HC, BMI, comparison of activity levels with 
peers, SBP, DBP, hypertension, glycohemoglobin, cardio-
vascular health level), the standard definition of each pre-
dictor is presented in Table S6. Following 99 iterations, 
the analysis identified five robust predictors: BMI, HC, 
WC, gender, and SBP. Age was included a priori based 
on established epidemiological evidence. Figure 3A illus-
trates the iterative selection process, where green boxes 

https://vizhub.healthdata.org/gbd-results/
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Fig. 2  Phenotypic variation explained (R²) by modifiable risk factors and its causal relationship with migraine. A. Variance explained (R2) of genetic expo-
sure phenotypes. B. Causal associations between 5 types of adjustable risk factors and the risk of migraine. Abbreviations: OR, odd ratio
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denote confirmed predictors and red boxes indicate 
rejected variables. Subsequently, a correlation analysis 
was conducted to examine the interrelationships among 
the variables (Fig. 3B).

Eight machine learning models (including RF, SVM, 
GLM, GBM, KNN, NNET, LASSO and DT) were devel-
oped and validated using shadow feature methods, with 
all models utilizing the same six input variables. The per-
formance of these models was assessed via ROC curves 
and residual distributions (Fig.  3C and D). Notably, the 
RF model exhibited superior predictive performance and 
model fit within the test framework, achieving an AUC 
of 0.927, thereby establishing its exceptional ability to 

predict migraine risk. Comparative performance metrics 
for eight models are summarized in Fig. 4.

The SHAP analysis of the optimal RF model quanti-
fied the specific contributions of the variables, revealing 
that gender was the most dominant risk factor among 
the five, as evidenced by the highest SHAP value. Addi-
tionally, SBP and WC were identified as key variables in 
cardiovascular health and body composition measures, 
respectively, while BMI and HC demonstrated progres-
sively diminishing importance (Fig. 5A-D). Then, we will 
develop the most advanced RF model embedded within 
a web-based platform, which enables individualized risk 
stratification. This platform features an intuitive user 
interface and integrates all six key model functionalities 

Fig. 3  Comprehensive ML Framework Integrating Boruta Feature Selection, Correlation Analysis, and Model Performance Evaluation with AUROC and Re-
sidual Distribution. A. Important feature variable filtering based on Boruta algorithm. B. Assessment of feature correlations between important variables. 
C. The AUROC curve of the respective residual distribution. D. The AUROC curve of the respective residual distribution. Abbreviations: DBP, Diastolic Blood 
Pressure; SBP, Systolic Blood Pressure; BMI: Body Mass Index; RF, Random Forest; GLM: Generalized Linear Model; KNN, K-Nearest Neighbor; SVM, Support 
Vector Machine; GBM, Gradient Boosting Machine; NNET, Neural Network; DT, Decision Tree; LASSO, Least Absolute Shrinkage and Selection Operator; 
SHAP, SHapley Additive exPlanations; AUROC, Area Under the Receiver Operating Characteristic Curve; ML, Machine Learning
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corresponding to the input (​h​t​t​p​​s​:​/​​/​m​a​c​​h​i​​n​e​l​​e​a​r​​n​i​n​g​​1​.​​s​h​
i​​n​y​a​​p​p​s​.​​i​o​​/​m​i​​g​r​a​​i​n​e​_​​p​r​​e​d​i​c​t​i​o​n​/). By inputting ​p​a​t​i​e​n​t​-​s​p​
e​c​i​f​i​c information, the platform outputs the probability of 
the predicted outcome (Fig. 5E).

Global mapping of migraine burden
By 2050, global migraine incidence is projected to 
decrease substantially to 858.45 cases per 100,000 popu-
lation (95% UI: 425.68, 1291.23) compared to 2021 levels 
(1,153.20, 95% UI: 1,151.53, 1,154.87). However, disease 
burden estimates indicate an increase from 14,246.55 
(95% UI: 14,240.33, 14,252.77) in 2021 to 14,351.68 (95% 
UI: 7,323.68, 21,379.68) in 2050, while DALYs show a 
modest decline from 532.70 (95% UI: 531.51, 533.89) to 
523.44 (95% UI: 261.39, 785.48) (Fig. 6 & Table S7).

Notable gender disparities emerge in the analysis, with 
consistently lower rates observed among males com-
pared to females across all metrics: incidence (858.45 vs. 
1,351.44), disease burden (10,601.70 vs. 17,349.22), and 

DALYs (397.38 vs. 620.39) (Table S7). Despite the pro-
jected decrease in incidence risk, migraine continues to 
impose substantial disease burden and demonstrates sig-
nificant gender-based differences.

At the national level, the Islamic Republic of Iran (Iran) 
exhibits the highest predicted risks across all metrics 
for 2050, with estimated incidence of 2,499.11 (95% UI: 
113.87, 4,920.62), disease burden of 60,941.03 (95% UI: 
0.00, 168,345.47), and DALY rate of 1,275.87 (95% UI: 
64.92, 2,609.83). Belgium and Norway also maintain ele-
vated predictions for migraine-related metrics. Detailed 
results are presented in Table S8.

Discussion
Migraine represents a significant global health threat and 
has been associated with psychiatric disorders, diet, and 
stroke. Despite DALYs associated with migraine escalat-
ing, the causal roles of adjustable risk factors, particu-
larly those amenable to population-level interventions, 

Fig. 4  Different performance of the eight ML models on the training and test sets. AUC represents the area under the ROC curve and is used to evalu-
ate the performance of the model in binary classification problems. Precision represents the precision rate, the higher the precision rate, the higher the 
proportion of real examples in the model prediction results, and the stronger the model’s ability to identify positive samples. Recall represents the recall 
rate, the higher the recall rate, the higher the proportion of positive samples successfully predicted by the model, and the more comprehensive the rec-
ognition ability of the model. F1 value represents the harmonic mean of precision and recall ratio are used to comprehensively evaluate the performance 
of the model. Accuracy refers to the proportion of the samples that are correctly predicted as positive cases to the total number of samples that are 
predicted as positive cases. Abbreviations: RF, Random Forest; GLM: Generalized Linear Model; KNN, K-Nearest Neighbor; SVM, Support Vector Machine; 
GBM, Gradient Boosting Machine; NNET, Neural Network; DT, Decision Tree; LASSO, Least Absolute Shrinkage and Selection Operator; AUC, Area Under 
the Receiver Operating Characteristic Curve; ML, Machine Learning
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remain underexplored [35–37]. Our study examines the 
causal associations between various adjustable risk fac-
tors and migraine from a genetic perspective, progressing 
to individual-level risk prediction and population-level 
burden mapping. Through integration of biomarker pro-
filing, causal inference methods, ML predictive model-
ing, and disease burden mapping, we established causal 
relationships linking cardiovascular health indicators, 
body composition markers, and psychological factors 
with migraine risk modification. We identified key bio-
markers and established high-performance risk predic-
tion models, and quantified substantial health benefits 
from migraine improvement. These findings bridge the 
gap between biological mechanisms, clinical practice 
and public health policy, significantly enhancing the 
operational feasibility of early migraine identification and 
prevention.

Our MR analyses revealed paradoxical protec-
tive associations between body composition metrics 
(BMI, HC) and migraine risk—contrasting with prior 
observational evidence [38, 39]. This paradoxical find-
ing may be explained by elevated BMI and HC levels 
reflecting substantial subcutaneous fat accumulation, 

which is associated with higher adiponectin secretion. 
Adiponectin may mitigate migraine risk by inhibiting 
neuro-inflammatory pathways involving Interleukin-6 
(IL-6) and Tumor Necrosis Factor-alpha (TNF-α) [40, 
41]. Notably, our study uncovers a complex and multi-
faceted relationship between obesity, the risks of T2DM, 
and migraine, challenging the conventional views that 
treat these conditions solely as independent risk factors. 
The underlying mechanism may involve metabolic adap-
tive regulation, wherein higher body fat percentages pro-
vide alternative energy reserves for neurons by increasing 
the availability of free fatty acids, which are subsequently 
converted into ketone bodies such as β-hydroxybutyric 
acid [42]. This process helps stabilize cortical excitability 
fluctuations induced by hypoglycemia. These findings are 
consistent with results from multicenter cohort studies, 
which indicate a lower prevalence of migraine among 
individuals with diabetes compared to those without [43, 
44]. Additionally, consistent with clinical research, psy-
chological health indicators including feelings of misery 
demonstrated detrimental effects on migraine risk, mani-
festing through pathogenic psychoneuro-inflammatory 
axes and increased disability risk [45–47].

Fig. 5  The importance and contribution of each characteristic variable in the ML model were evaluated based on shap analysis. A. Feature colony map 
interpretable based on SHAP; B. Feature importance ranking graph that can be interpreted based on SHAP; C. Interpretable feature variable waterfall dia-
gram based on SHAP; D. Contribution maps of individual features interpretable based on SHAP. E. Visual operational interface of the migraine prediction 
model. Abbreviations: WC, Waist Circumference; SBP, Systolic Blood Pressure; BMI: Body Mass Index; SHAP, SHapley Additive exPlanations; ML, Machine 
Learning
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Fig. 6  Assessment of the potential health benefits of global mapping and of the burden of migraine based on the BAPC model by 2050. A. Age-stan-
dardized incidence rates of migraine from 204 countries. B. Age-standardized prevalence rates of migraine from 204 countries. C. Age-standardized DALY 
rates of migraine from 204 countries. DALYs combine YLDs and YLLs due to premature mortality. Abbreviations: BAPC, Bayesian Age-Period-Cohort Model; 
ASIR, Age-standardized Incidence Rate; ASPR, Age-standardized Prevalence Rate; ASDR, Age standardized DALY Rate; DALY, Disability-Adjusted Life Year; 
YLDs, Years Lived with Disability; YLLs, Years of Life Lost
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The ML-derived risk stratification model prioritized six 
intervention targets: gender, age, BMI, WC, hypertension 
and HC. While gender itself is non-adjustable, its iden-
tification as the strongest predictive factor aligns with 
MR studies showing higher susceptibility to psychologi-
cal health factors among females, suggesting that estro-
gen fluctuations may amplify psycho-inflammatory axis 
effects through regulation of trigeminal vascular reactiv-
ity [48–50]. These findings indicate that prioritizing psy-
chological interventions in high-risk female populations 
may yield higher health benefits for reducing migraine 
risk. Furthermore, the interaction effect between WC and 
SBP was significant in SHAP analysis, showing that vis-
ceral fat accumulation damages endothelium-dependent 
vasodilation through pro-inflammatory microenviron-
ments, while elevated SBP maintains cerebral perfu-
sion through compensatory vascular tension regulation, 
suggesting that combined weight reduction and blood 
pressure monitoring interventions may generate greater 
health benefits [51]. In addition, the clinical implica-
tions of these findings should be interpreted through the 
lens of precision medicine. While population-level stud-
ies support the modifiability of the identified metabolic 
factors, individual genetic architecture may substan-
tially influence both baseline risk levels and interven-
tion responsiveness. For instance, individuals with high 
polygenic risk scores (PRS) for dyslipidemia may derive 
limited benefit from dietary changes alone compared to 
those with lower genetic risk [52]. Therefore, risk factor 
management strategies should ideally integrate genetic 
profiling when available, particularly in cases where con-
ventional approaches prove ineffective.

Despite projected 25.5% reductions in global migraine 
prevalence by 2050, persistently elevated DALYs high-
light ongoing unmet needs in chronic disease manage-
ment. Females are expected to bear a 1.6- to 1.8-fold 
greater burden compared to males. Epidemiologi-
cal investigations demonstrate significant correlations 
between migraine prevalence variations and female 
reproductive status, potentially interacting with excit-
atory circuits, including serotonergic components [50, 
53, 54]. While identifying adjustable risk factors for pri-
mary prevention, three critical gaps remain. First, current 
clinical practices predominantly focus on acute symp-
tomatic treatment while neglecting long-term chronic 
disease management [55]. Second, while fasting glucose, 
lipid profiles, and diabetes status are generally considered 
adjustable cardiovascular risk factors, emerging evidence 
suggests significant genetic modulation of these traits 
[56]. Therefore, conventional lifestyle interventions may 
have limited efficacy for individuals with higher PRS, 
potentially requiring more aggressive pharmacological 
approaches. In addition, migraine improvement strate-
gies should prioritize gender-related pathophysiological 

differences, incorporate individualized therapeutic 
approaches and enhance long-term disease management 
protocols to optimize population health outcomes. From 
a public health perspective, the risk stratification frame-
work established in this study provides critical epidemi-
ological evidence for optimizing resource allocation in 
migraine management. Future implementation research 
should extend these insights through subtype-specific 
interventions that account for heterogeneous therapeutic 
responses across migraine phenotypes.

Our research possesses several notable advantages. 
First, our genetic tools were selected based on GWAS 
of diagnosed migraine cases rather than on prox-
ies for symptoms or transient clinical manifestations. 
MR leverages genetic variations that represent lifelong 
exposure levels, and its strength lies in being less prone 
to phenotypic fluctuations compared to observational 
measurements. Second, while MR suggests that the indi-
vidual-level effect size may be limited, population-level 
interventions can still yield significant value in reduc-
ing the burden of migraine. Additionally, we performed 
rigorous pleiotropy tests, preserving the strength of the 
instruments while substantially mitigating potential 
pleiotropic confounding.

Limitations and future research directions
Several limitations warrant consideration. First, the 
migraine risk and burden projections assume mainte-
nance of current treatment efficacy levels and health-
care policy implementation intensity. While our risk 
prediction models characterize baseline epidemiologi-
cal patterns, it is important to note that should novel 
therapeutic interventions achieve widespread clinical 
adoption, the actual preventable disease burden could 
substantially exceed our model’s conservative estimates. 
Second, the reliance on self-reported migraine diagnoses 
in the UK Biobank cohort introduces potential misclas-
sification bias. The observed associations should be inter-
preted as reflecting biological pathways shared across 
self-reported migraine phenotypes rather than mecha-
nisms specific to clinically defined migraine subtypes. 
Although this approach facilitates large-scale data col-
lection, the lack of clinical verification may conflate het-
erogeneous headache disorders under a single diagnostic 
category. Third, the absence of long-term follow-up data 
further limits longitudinal analysis of disease progres-
sion. Fourth, our epidemiological approach, while appro-
priate for detecting population-level associations, could 
not account for clinical subtypes (episodic vs. chronic 
migraine) due to unavailability of standardized diagnostic 
information. This phenotypic heterogeneity may obscure 
subtype-specific risk factors and attenuate observed 
effect sizes. Finally, the accuracy of GBD estimates is 
contingent on the quality and consistency of source data 
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across regions. Methodological variations in data col-
lection may compromise the reliability of health benefit 
assessments.

Future research should prioritize three directions. First, 
incorporating detailed clinical phenotyping to enable 
subtype-specific risk stratification. Second, establishing 
longitudinal cohorts to elucidate long-term prognosis 
in migraine populations. Third, conducting multicenter 
external validations of machine learning models using 
diverse population datasets.

Conclusion
This study integrated a framework combining causal 
inference, ML, and burden prediction to character-
ize modifiable risk factors for migraine. It identified the 
causal relationships between metabolic, cardiovascular, 
and psychological factors and the onset of migraine, and 
developed a predictive model along with a visualization 
map of disease burden for personalized risk stratification 
and burden assessment. Future efforts should focus on 
developing targeted public health strategies, particularly 
by coordinating lifestyle modifications, biomarker sur-
veillance, and gender-sensitive policies, to mitigate the 
global burden of migraines.
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