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Introduction
Calcitonin gene-related peptide (CGRP) and substance P 
(SP) are long known neuropeptides present in small pep-
tidergic primary afferent neurons, i.e., nociceptors with 
C- and Aδ-fibers [1–5], but also in other neural struc-
tures including the many areas of the brain [6–11]. It is 
generally thought that these neuropeptides are stored in 
dense-core vesicles [12–17]. They can be released upon 
noxious stimulation from peripheral as well as central 
endings of the primary afferent neurons [1, 18, 19] and 
also from cell bodies [20–22] and even from axons within 
peripheral nerves [23, 24]. Their release depends on a 
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Summary
Background The neuropeptides calcitonin gene-related peptide (CGRP) and substance P are important mediators of 
neurogenic inflammation when they are released from activated primary nociceptive afferents. It is long evident that 
neuropeptides play an important role in migraine pathophysiology, but the significance of neurogenic inflammation 
is still debated.

Methods In an approved hemisected rodent head preparation, we measured CGRP release from the cranial dura 
mater in parallel with substance P release using animals pre-treated with anti-CGRP antibodies or control solutions.

Results Apart from the known decrease in CGRP release following antibody treatment, we found a significant inverse 
correlation of basal and stimulated CGRP versus substance P release across all experiments. The results are discussed 
in connection with our previously published data.

Conclusions An increase in CGRP release seems to inhibit substance P release in meningeal structures possibly 
decreasing substance P-dependent plasma extravasation, which argues against a significant role of neurogenic 
inflammation in migraine.
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rise in intracellular calcium [23, 25–27], which implies 
an exocytotic mechanism [28, 29]. CGRP has been found 
to exist in higher proportions of afferents or at a higher 
concentration compared to SP. It is generally thought that 
both peptides co-exist in same vesicles [12, 30], but the 
existence of separate CGRP and SP vesicles has also been 
evidenced [17, 31, 32]. Besides, other neuropeptides like 
neurokinin A can be present together with CGRP and SP 
[33–35].

The release of CGRP and SP is closely linked to the 
phenomenon of neurogenic inflammation, which 
thought to be involved in several painful disorders like 
migraine, complex regional pain syndrome and sunburn 
[36–41]. Neurogenic inflammation includes arterial vaso-
dilatation, which is primarily a function of CGRP [42, 43], 
plasma extravasation from venous vessels and capillaries, 
which is primarily a function of SP and the neurokinins A 
and B [44, 45] but can be potentiated by CGRP [46], and 
possibly mast cell degranulation, which may be species- 
and organ-specifically induced by CGRP or SP [47–50]. 
Neurogenic inflammation has been made responsible 
for mediator cascades ending up in primary and second-
ary sensitization, which may be closely associated with 
hyperalgesia and pain [51–53]. Meningeal neurogenic 
inflammation, particularly plasma extravasation in the 
cranial dura mater, has been hypothesized to be involved 
in migraine pain generation, but it is still unclear if this 
association is merely an experimental phenomenon [41, 
54–56]. While vasodilatation of cranial arteries during 
experimental and spontaneous migraine pain has fre-
quently been described [57–60], although not without 
contradictory findings [61], a clear proof that menin-
geal plasma extravasation is present in humans during 
migraine pain is lacking so far. In line with this discrep-
ancy, there is robust evidence for an increased CGRP 
release during stimulation of the trigeminal system [62] 
and during migraine attacks, measured in the venous 
outflow from the head [63–65] but also in saliva and tear 
fluid [66–68], whereas early reports about increases in 
salivary SP levels during migraine are inconsistent [69, 
70].

In the present study we set out to measure SP released 
from the dura mater in our approved hemisected rat head 
preparation parallel to CGRP release data, part of which 
has been published before [71]. In this previous publica-
tion we have compared the CGRP release between ani-
mals pre-treated with fremanezumab, a monoclonal 
anti-CGRP antibody, with animals pre-treated with a not 
CGRP binding control antibody. In the present paper we 
show additional experiments of this kind with correlation 
of CGRP and SP release, which was boosted by injection 
of glycerol trinitrate (GTN) to induce orofacial sensitiza-
tion often associated with migraine [72–75].

Methods
Animal housing and experiments were carried out 
according to the German guidelines and regulations of 
the care and treatment of laboratory animals and the 
European Communities Council Directive of 24 Novem-
ber 1986 (86/609/EEC), amended 22 September 2010 
(2010/63/EU). The experimental protocols were reviewed 
by an ethics committee and approved by the District 
Government of Middle Franconia (54-2532.1-21/12).

Animals
Adult Wistar rats of both sexes (body weight of 12 males: 
190–370 g; 6 females: 250–280 g), bred and housed in the 
animal facility of the Institute of Physiology and Patho-
physiology of the Friedrich-Alexander-Universität (FAU) 
Erlangen-Nürnberg, were kept in a 12-hour light/dark 
cycle in standard cages in groups of 3–4 and fed with 
standard food pellets and water ad libitum. The animals 
were matched and distributed according to their weight, 
as equally as possible, for the two antibodies used (see 
below). The oestrus state of the females was not assessed.

Administration of antibodies
The rats were anaesthetized in a plastic box with an 
increasing concentration of isoflurane up to 4% (Forene, 
Abott, Wiesbaden, Germany), applied with an evapora-
tor (Forane Vapor 19.3, Dräger AG, Lübeck, Germany). 
The animals were weighed, and the neck region was 
shaved and disinfected with 70% ethanol. Then, 30  mg/
kg anti-CGRP antibody, fremanezumab, or isotype con-
trol antibody, a human IgG2 antibody-targeting keyhole 
limpet hemocyanin (Teva Pharmaceuticals, Redwood 
City, CA, USA) diluted in saline (10  mg/mL) was sub-
cutaneously injected in an even distribution 2  cm left 
and right from the midline and 5 cm from the caudal of 
the occiput, using a syringe with a 27-gauge needle. The 
examiners were blinded as to the identity of the antibod-
ies. The rats were marked at their tail for identification 
and placed back in their cage, where they recovered from 
the anaesthesia usually within 2–3 min. The animals were 
inspected two times on every following day regarding any 
unusual behaviour.

Preparation for CGRP and substance P release 
measurements
Ten or 30 days after the antibody injection, the rats were 
again shortly anaesthetized by isoflurane to receive an 
intraperitoneal (i.p.) injection of 5  mg/kg glycerol trini-
trate (GTN, 1  mg/mL in saline) using a 23 G needle. 
Four hours later, the rats were deeply anaesthetized in 
an atmosphere of an increasing concentration of CO2 
and killed by bleeding. The head was separated, skinned, 
and divided in the midline, and the two skull halves with 
adhering dura mater were prepared for the measurement 
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of the CGRP release according to an approved stan-
dard protocol [26, 76]. The skull halves were washed for 
30 min with synthetic interstitial fluid (SIF) and mounted 
in a water bath above warm water (37  °C), holding the 
temperature constant. The SIF was composed of (in 
mM): 107.8 NaCl, 3.5 KCl, 0.69 MgSO4 · 7 H2O, 26.2 
NaHCO3, 1.67 NaH2PO4 · 2 H2O, 9.64 Na-gluconate, 
5.55 glucose, 7.6 sucrose, and 1.53 CaCl2 · 2 H2O buffered 
to pH 7.4 with carbogen gas (95% O2, 5% CO2). The skull 
halves were filled twice with 500 µL of SIF, followed by 
a solution of 500 nM capsaicin (dissolved in saline with 
1% ethanol and further diluted with SIF) and another SIF; 
all the applications were at intervals of 5 min. The cho-
sen capsaicin concentration exerts a robust CGRP release 
[77]. At the end of each interval, the fluid was carefully 
collected using a pipette without touching the tissue. 
Two samples of 100 µL each were separated, immediately 
supplemented with 25 µL of enzyme-immunoassay (EIA) 
buffer (Bertin Pharma/SPIbio, Montigny le Bretonneux, 
France) or ELISA buffer (Cayman Chemical, Ann Arbor, 
MI, USA), respectively, which contain peptidase inhibi-
tors. The samples were immediately deep-frozen and 
stored at − 20 °C until their analysis within one week.

Analysis of released CGRP concentration
After thawing, one sample of each experiment was pro-
cessed with an enzyme immunoassay (EIA) kit for CGRP 
(Bertin Pharma/SPIbio, Montigny le Bretonneux, France) 
according to the instructions of the manufacturer. The 
assay is based on a double-antibody sandwich technique 
with monoclonal mouse antibodies specific for CGRP 
(capture antibodies) fixed to the wells of a plastic plate 
and soluble anti-CGRP tracer antibodies, which recog-
nize another epitope of the CGRP molecule. The tracer 
antibodies are conjugated with acetylcholine esterase 
(AchE) that converts Ellman’s reagent to a yellow sub-
stance, the absorbance of which is measured at a wave-
length of 405  nm using a photo-spectrometer (Opsys 
MR, Dynex Technologies, Denkendorf, Germany). The 
intensity of this colour is proportional to the amount of 
anti-CGRP tracer bound to the CGRP captured in the 
well and hence proportional to the amount of free CGRP 
in the samples or in 8 standards containing defined con-
centrations of CGRP. The final concentration is calcu-
lated based on standard curve fitted to the 8 standards. 
The CGRP assay detects both α- and β-CGRP with a 
lower limit of 2 pg/mL and has < 0.01% cross-reactivity 
with other proteins of the calcitonin family. The CGRP 
concentration in each sample was calculated in pg/mL, 
considering the added volume of EIA buffer.

Analysis of released substance P concentration
From the other defrosted sample of each experiment 
50 µL were taken for processing with an enzyme-linked 

immune-assay (ELISA) kit for SP (Cayman Chemical, 
Ann Arbor, MI, USA) according to the instructions of 
the manufacturer. The assay is based on the competi-
tion between SP in the samples and a conjugate of SP 
and AchE (tracer, constant amount) for SP-specific rabbit 
antibodies. These antibodies loaded with SP or the conju-
gate bind to mouse anti-rabbit IgG (capture antibodies) 
fixed to the wells. The AchE converts Ellman’s reagent 
to a yellow substance, which is quantified as described 
above to be proportional to the amount of tracer bound 
to the well and hence inversely proportional to the 
amount of free SP in the samples or in the 8 standards 
containing defined concentrations of SP. The SP assay has 
a lower detection limit of 3.9 pg/mL and a cross-reactiv-
ity with neurokinin A of 2.7%, according to the manu-
facturer’s information. The SP concentrations in each 
sample was calculated in pg/mL, considering the added 
volume of ELISA buffer.

Data processing and statistics
For the power calculation we used experiments with 
fremanezumab treatment as previously reported [71] and 
calculated post-hoc the effect size (Cohen’s d) for stimu-
lated CGRP release between fremanezumab and control 
antibody to 1.83. With an α error probability of 0.05 and 
a 1-β error probability of 0.8, the actual power is 0.98 
and the required total sample size is 6, as calculated with 
G*Power 3.1 (published by the Heinrich Heine Univer-
sität Düsseldorf, Germany). Statistical analysis was per-
formed using Statistica software (StatSoft, Tulsa, USA). 
Analysis of variance (repeated measures ANOVA, one-
way ANOVA) extended by Tukey’s honest significant dif-
ference (HSD) was applied. Product-moment correlation 
was used to compare CGRP and SP release data of same 
experiments. The level of significance was set at p < 0.05. 
Data are displayed as mean ± SEM (standard error of the 
mean).

Results
CGRP and SP release was determined in 24 hemisected 
cranial preparations from 12 rats (6 male and 6 female 
animals), half of them pre-treated with fremanezumab 
and the other half with isotype control antibody 10 days 
before the final experiments. In the first two samples 
we determined the basal (unstimulated) release, then 
capsaicin (500 nM) was applied to provoke stimulated 
release, and finally a sample without capsaicin was taken 
as a post-control (Fig. 1A, B). In addition, 12 hemisected 
preparations from 6 male animals, 3 of them pre-treated 
with fremanezumab and 3 with control antibody 30 days 
prior to the final experiments, were treated in the same 
way (Fig. 1C, D).



Page 4 of 11Dux and Messlinger The Journal of Headache and Pain          (2025) 26:119 

CGRP release
In the experiments of the animals pre-treated with 
fremanezumab or control antibody 10 days prior to the 
release experiment, basal and stimulated CGRP release 
values were analysed using repeated measures ANOVA 
with the categorical factors, antibody and sex. ANOVA 
showed significant differences between the repeated 
measurements (F3,60 = 172.8, p < 0.0001), as expected, but 
also between antibodies (F1,20 = 34.8, p < 0.0001) as well 
as sexes (F1,20 = 52.0, p < 0.0001). Therefore, they were dif-
ferentially displayed in Fig. 1A. The Tukey post-hoc test 
showed no difference between the two basal values but 
significant increases in stimulated CGRP release (from 
the second basal value) in female animals pre-treated 
with either antibody and in males treated with the con-
trol antibody (p < 0.001) but not in males treated with 

fremanezumab (p = 0.46). The stimulated values were 
different between the sexes in fremanezumab treated 
animals (p < 0.01) as well as in control antibody treated 
animals (p < 0.001). A difference in stimulated release 
values between fremanezumab and control antibody was 
indicated in female animals (p < 0.001) but not in males 
(p = 0.24).

In the additional experiments with male animals treated 
with antibodies 30 days prior to the release experiment 
(Fig.  1C), similar differences were seen as in the female 
animals of the latter groups. ANOVA with repeated 
measures showed significant differences between the 
measurements in time (F3,30 = 88.4, p < 0.0001), due to 
the stimulated release, which was significantly increased 
both after fremanezumab and control antibody (Tukey 
test, p < 0.001) but also between the antibodies (p < 0.01).

Fig. 1 CGRP and SP release from the dura mater in same experiments, 10 days (A, B) or 30 days (C, D) after injection of fremanezumab or isotype control 
antibody (Control Ab) in female (F) and male (M) animals. Basal release is determined after periods of 5 and 10 min in buffer (SIF) followed by the release 
stimulated with 500 nM capsaicin (Cap) and by a post-stimulation period in SIF. Each data point represents the mean ± SEM of 6 experiments. Significant 
differences between basal (SIF2) and stimulated release (**, p < 0.001) and between the two antibodies in stimulated release (##, p < 0.001; #, p < 0.01)
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Substance P release
In the experiments of animals pre-treated with freman-
ezumab or control antibody 10 days prior to the release 
(Fig. 1B), repeated measures ANOVA with the categori-
cal factors antibody and sex showed a just significant 
difference between the repeated measurements (F3,60 = 
3.6, p < 0.05) and between the sexes (F1,20 = 14.0, p < 0.01) 
but not between the antibodies (F1,20 = 3.9, p = 0.06). The 
basal release values seemed to vary but the Tukey post-
hoc test showed no difference between specific measure-
ments. Likewise, in the additional experiments with male 
animals pre-treated 30 days prior to the release (Fig. 1D), 
no significant differences were detected between the 
measurements.

Correlation of CGRP and substance P release
The main issue of this study was to compare CGRP and 
SP measurements in same experiments, independent 
of sexes and antibody treatment. Overall the experi-
ments indicated that a high CGRP release is associated 
with a low SP release. To evaluate this, we averaged the 
two basal values of each experiment and used product-
moment correlation to compare basal and stimulated 
release values of CGRP with respective SP release values. 
There was a significant negative correlation between the 
basal release values of CGRP and SP (N = 36, r = -0.411, 
p < 0.05; Fig. 2A). The significant correlation between the 
stimulated release values of CGRP and SP was even more 
negative (N = 36, r = -0.503, p < 0.05; Fig. 2B). Calculating 
only the 10-day data, the correlation coefficient is -0.459 
for the basal release and − 0.520 for the stimulated release 
values (both significant). Calculating only the 30-day val-
ues, the respective coefficient is -0.223 (basal) and − 0.399 
(stimulated), both not significant. The non-significant 
correlation of the 30-day data may partly be due to the 
lower sample size but also to sex differences. Indeed, 
when we calculate only male samples, the correlation 
coefficient is -0.354 for the basal release (not significant) 
but − 0.613 for the stimulated release values (significant). 
Calculating only female samples, the correlation coeffi-
cient is -0.493 for the basal and − 0.451 for the stimulated 
release values (both close to significance).

Discussion
CGRP and substance P release from rodent dura mater
Neuropeptide release from the cephalic dura mater in 
the hemisected rodent head is a long approved model 
to test the impact of activating and sensitizing agents 
on primary meningeal afferents [76–78]. Thereby CGRP 
release upon electrical or chemical stimulation has been 
quantified and found to be increased, whereas a signifi-
cant change in SP release has not been seen [76]. This 
discrepancy was confirmed in the present study using 
capsaicin to stimulate primary meningeal afferents. 

Moreover, in accordance with our previous study [71], we 
have demonstrated that the anti-CGRP antibody freman-
ezumab reduces the increase in stimulated CGRP release 
but did not change SP release. Comparing CGRP and SP 
release pairwise, the correlation turned even out to be 
significantly inverse. This is certainly not a specific effect 
of fremanezumab, since in a recent study of our labora-
tories another anti-CGRP antibody, galcanezumab, has 
shown the same differential effect, even associated with 
an increased SP release compared to control animals not 
treated with galcanezumab [79]. Thus this effect does 
also not depend on the treatment of animals with GTN. 
Figure  3 shows the comparison of data from our previ-
ous study measuring CGRP release in animals treated 
with fremanezumab and with galcanezumab [71, 79]. 
Thus both fremanezumab and galcanezumab treatment 
decreases CGRP release and tend to increase SP release. 
Generally, high CGRP release seems to be associated 
with low SP release and vice versa.

Differences in storage and release of CGRP and substance P
The question is, how this discrepancy can evolve. It is 
generally believed that CGRP and SP are co-localized 
[80, 81] and even stored in same dense core vesicles 
and hence co-released upon stimulation of nocicep-
tors [12, 30], although observations of separate vesicles 
containing either CGRP or SP have also been reported 
and hence separated release of these peptides has been 
assumed [1, 12, 17, 31, 32]. Different to our results of a 
converse correlation of CGRP and SP release from the 
dura mater, in spinal dorsal horn slices CGRP has been 
reported to potentiate capsaicin stimulated SP release 
[82], but this was most likely due to a stimulating effect 
of CGRP receptors located on separate SP but not CGRP 
containing central afferent terminals, as it was concluded 
from more recent patch clamp recordings on medullary 
slices [83]. The quantity of released CGRP in our study 
was much higher than that of released SP, which is simi-
larly seen in our previous experiments of this kind [76] 
but also in similar preparations and other tissues [34, 84]. 
This is consistent with the frequent observation that in 
several species more trigeminal and dorsal root ganglion 
neurons contain CGRP immunoreactivity compared to 
SP immunoreactivity [80, 85–87] and that nearly all SP 
immunopositive neurons are also CGRP-positive but not 
vice versa [88, 89].

Release mode of CGRP and substance P
The release mode of neuropeptides is not really clear. 
Stimulated release depends clearly from an increase 
in intracellular calcium, either by opening of voltage-
dependent calcium channels or transient receptor 
potential (TRP) channels [1, 25, 27–29, 90], but the clas-
sical exocytosis as known from synaptic vesicles storing 
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Fig. 2 Correlation of CGRP and SP release in same experiments (n = 36 hemisected preparations) from rats after 10 days (green circles) or 30 days (red 
circles) after injection of fremanezumab or isotype control antibody. Dark green/red circles mean data from fremanezumab treated animals, light green/
red circles are data from control antibody treated animals. Red line shows regression line, broken lines indicate 95% confidence interval. Significant nega-
tive correlation in basal (unstimulated) release (r = -0.411) and in capsaicin stimulated release (r = -0.503)
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neurotransmitters like glutamate is questionable; at least, 
typical omega-shaped membrane contacts with dense 
core vesicles have not been seen [91]. Also, in the dor-
sal horn of several species, terminals immunoreactive 
for CGRP and SP have been found to lack immunore-
activity for synaptosome-associated protein of 25  kDa 
(SNAP-25), which is essential for the classical form of 
transmitter exocytosis [92], but this observation is partly 
in conflict with other studies showing that CGRP and SP 

are associated with synaptosome-like structures [93] and 
that CGRP release depends on a SNAP-25 complex dif-
ferent to that responsible for the exocytosis of small syn-
aptic vesicles [29].

Degradation of CGRP and substance P
Notwithstanding these uncertainties and assuming that 
CGRP and SP are mainly stored in same vesicles, it is 
reasonable to assume that they are mainly co-released, 

Fig. 3 Changes in stimulated CGRP and SP release (-fold of basal release) in experiments with pre-treatment of fremanezumab vs. isotype control anti-
body (A, B) and in experiments with galcanezumab vs. vehicle (C, D). Stimulation in A and C was performed with 500 nM capsaicin, in C and D with 100 
nM capsaicin. One-way ANOVA, *** p < 0.0005, ** p < 0.005, * p < 0.05. Numbers in bars represent numbers of experiments. Data are from Dux et al. 2022 
and Friedrich et al. 2024
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whatever the nature of the exocytosis mechanisms may 
be. Hence another mechanism following the release 
should be taken into account. There is long evidence for 
an interaction of both neuropeptides regarding their deg-
radation by peptidases [94]. Co-injection of both peptides 
into the skin has been found to shorten the vasodilata-
tion induced by CGRP, a phenomenon explained by the 
action of proteases released from mast cells, which are 
stimulated and degranulated by SP [81]. However, mast 
cells can also be degranulated by CGRP, which has been 
explicitly shown to occur in the rodent dura mater [52, 
95], so that this could be the result of a reciprocal pro-
cess of peptide degradation dominated by the peptide 
with the higher concentration. An imbalance in this pro-
cess can be expected by the much higher concentrations 
of released CGRP compared to SP (see Fig. 1), which has 
been observed in the dura mater as well as in the skin [76, 
96].

Classical preclinical experiments of neurogenic CGRP and 
substance P effects
Stimulation of meningeal afferents in classical animal 
experiments has been found leading to plasma protein 
extravasation from postcapillary vessels in the dura mater 
[97, 98] and to arterial vasodilatation and increased blood 
flow, which is mainly a function of CGRP. Neurogenic 
increases in diameter of rat dural arterial vessels were 
blocked by the CGRP receptor antagonist CGRP8 − 37 but 
not by the NK1 receptor antagonist RP67580 [46, 99]. 
Accordingly, electrically evoked increases in meningeal 
blood flow were significantly reduced by CGRP8 − 37 but 
not by the above mentioned NK1 antagonist [100, 101]. 
Interestingly, pretreatment of guinea pig basal arteries 
with SP attenuated slightly the CGRP-induced relaxation 
[33]. The concentration of SP necessary to cause half-
maximal vasodilation of human isolated cerebral arter-
ies was about 100 times higher than that of CGRP [102], 
whereas in isolated human middle meningeal arteries 
the vasorelaxing potency of CGRP and substance P was 
similar [103]. However, in our experiments the stimu-
lated CGRP release was at least 10 times higher than the 
stimulated substance P release. Taken together, it is con-
ceivable that the low level of substance P released from 
meningeal afferents does not significantly contribute to 
vasodilation in the dura mater.

Clinical relevance
As mentioned already at the beginning, there is incon-
sistency between CGRP and SP measurements also in 
clinical studies related to migraine and other primary 
headaches [68, 69, 104, 105]. While the role of CGRP 
with its vasodilation potency has long been confirmed by 
effective migraine therapies using CGRP receptor antag-
onists [106–108] or monoclonal antibodies targeting 

CGRP or its receptors [109–111], therapies targeting SP 
or its main effect, i.e. plasma extravasation, have failed 
[112]. Thus it is questionable that plasma extravasa-
tion has an important role in migraine pathophysiology, 
although the experimental concept had an important 
role in understanding neuropeptide mechanisms in 
migraine [113, 114]. In our present experiments we have 
applied GTN, bringing the experimental state of the ani-
mals closer to the pathophysiology of migraine [72–74]. 
We have recently shown that the intraperitoneal dose of 
5 mg/kg GTN is sufficient to increase CGRP release and 
cause periorbital hypersensitivity in rats [71, 75] as an 
expression of facial hyperalgesia, a symptom frequently 
experienced in migraine. Our results, showing that high 
CGRP release is associated with low SP release, gener-
ate even more doubts about an important role of SP in 
migraine pathophysiology and question if the experimen-
tal phenomenon of plasma protein extravasation exists in 
migraine at all.
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